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ABSTRACT

The major objective of this project is to design simple low-dispersion Finite-Difference

Time-Domain (FDTD) methods for electromagnetics. Literature review indicated that the

Nonstandard Finite Difference (NSFD) method exhibits great potentials in dispersion re-

duction. Different from the Standard Finite Difference (SFD) methods, the NSFD methods

are derived directly based upon dispersion analysis. In this report, the basic concepts of

the NSFD methods are generalized to various extended finite-difference stencils. Further-

more, several improved NSFD methods are presented based on the standard fourth-order

stencil to mitigate the dispersion in multi-dimensional domains. The least square method

is used to optimize the coefficients of the proposed stencils. Numerical simulations show

that these schemes significantly reduce the dispersion error of their standard counterparts.

Many technical issues in practical implementations, such as absorbing boundary conditions,

stability conditions, and Gauss’s Laws, are discussed and justified. Moreover, two special

conditions are proposed for the extended stencils in the vicinity of the dielectric material

discontinuities. It was demonstrated that the accuracy of the fourth-order stencil is fully

restored by applying these conditions.

A very important electromagnetic interference (EMI) problem is also presented in

this report. The problem concerns the effects of passengers on personal electronic device

(PED) mutual coupling in a simplified Boeing 757 fuselage. The results predicted by FDTD

are compared to the measurements performed in the Electro-Magnetic Anechoic Chamber

(EMAC) of Arizona State University. It was found that the presence of the passengers

significantly dampens the resonances in the fuselage, which lower the potential EMI threat

to the on-board communication/navigation systems.
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CHAPTER 1

INTRODUCTION

Electromagnetic theory, one of the most important branches of physical science, stud-

ies the electric-magnetic fields generated by charges at rest or in motion (currents) [2].

The relations and variations between the electric-magnetic fields, charges and currents are

governed by basic laws developed by a group of distinguished scientists: Faraday, Ampere,

Gauss, Lenz, Coulomb, Gauss, Volta, and others. In 1873, Maxwell was able to mathe-

matically combine these laws into a consistent set of vector equations, which are referred

to as Maxwell’s equations. The modern form of Maxwell’s equations were formulated by

Heaviside in the late 19th century [3]. Then Hertz completely validated the theory of

Maxwell’s by a series of experiments. Motivated by the practical applications, most impor-

tantly radar and wireless communications, electromagnetic theory has been developing for

over 100 years. Today, electromagnetics has become an indispensable discipline of everyday

life which covers a wide range of applications, such as antennas, scattering, microwave cir-

cuits and devices, radio-frequency and optical communications, broadcasting, geosciences

and remote sensing, radar, radio astronomy, quantum electronics, solid state circuits and

devices, eletromechanical energy conversion and computers.

Almost all electromagnetic phenomena can be well described by Maxwell’s equations

either in differential or integral forms, associated with appropriate boundary conditions.

However, only a few canonical problems can be solved exactly. Closed-form solutions for

most practical and complex electromagnetic problems are usually intractable. For example,

some problems involve complex geometries that do not conform to any known orthogonal

coordinate systems for which the scalar Helmholtz equation can be solved by the method of
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the separation of variables. Also, many other problems may include nonlinear, anisotropic

or dispersive materials. Consequently, many numerical methods have been developed to

solve such problems.

With today’s computer resources, numerical methods are drastically more efficient, if

not the only way to solve complex practical electromagnetic problems. The most popular nu-

merical methods include, high frequency asymptotic methods, Method of Moments (MoM),

Finite Element Method (FEM) and Finite-Difference Time-Domain (FDTD) method, etc.

Brief introductions to these methods follows.

High-frequency asymptotic methods use optical asymptotic techniques, such as Geo-

metrical Optics (GO), Geometrical Theory of Diffraction (GTD), Physical Optics (PO),

and Physical Theory of Diffraction (PTD). These methods calculate the incident, reflected

and diffracted fields separately by introducing reflection and diffraction coefficients. The

ultimate solution is a superposition of the contributions from each part. These methods pro-

vide physical insight into the radiation and scattering mechanisms and yield accurate results

that compare well with the experiments. Pure high frequency methods are very useful in

electrically large problems with simple materials, such as perfect electric conductor(PEC).

However, these methods are usually more difficult to apply to complex geometries, espe-

cially those that involve complex materials. Thus, high-frequency asymptotic methods are

usually hybridized with other numerical methods, such as MoM. An introduction to the

methods can be found in [2].

Compared to the high-frequency asymptotic methods, MoM can handle objects of ar-

bitrary geometries especially those of planar shapes. It casts the solution for the induced

current density in the form of an integral equation, and expands the unknown quantity into
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a set of basis functions. MoM has become popular since the pioneering work of Richmond

and Harrington in 1960s. Since then, it has successfully solved a wide variety of prac-

tical electromagnetic problems, such as radiation from thin-wire antennas and scattering

problems. However, MoM usually cannot easily deal with inhomogeneous and non-linear

materials because of the difficulty to find the analytical Green’s function. Details of the

method can be found in [4].

FEM originates from material and structural analysis in mechanics and civil engineer-

ing. It was not used to solve practical electromagnetic problems until the late 1960s. The

successfulness of FEM is due to its powerful capability to model general anisotropic, dis-

persive and nonlinear media. By volumetrically discretizing all space and transforming

Maxwell’s equations into a weak form of either the electric or magnetic field wave equation,

FEM is able to solve more complex problems. The mathematical advantages of using the

weak form of the wave equation are that its solutions do not have as restricted properties

as the solutions of the standard wave equation. However, the method is not very efficient

for electrically large problems because one has to solve an associated huge matrix system.

More details about FEM can be found in [5].

Different from MoM and FEM, FDTD is a time-domain method. The currently stan-

dard FDTD method for electromagnetics was proposed by Yee in 1966 [6]. In Cartesian

coordinates, both the time and space derivatives in Maxwell’s equations in differential form

are directly replaced by second-order central difference approximations. Moreover, Yee clev-

erly staggers the positions of the E and H fields to naturally model the physical curls of

the fields. In the time domain, the leap-frog scheme is used to incrementally march the

variation of the E and H fields. Despite the simplicity and elegance of Yee’s algorithm, it
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did not receive much interest immediately due to the inability to model an ”open” problem

and the lack of high performance computers. As the computational resources became more

affordable, FDTD became more popular. Since the late 80s, the number of publications

related to the FDTD method has experienced nearly exponential growth in [7]. Moreover,

Berenger presented a Perfectly Matched Layer (PML) [8] – [9], which successfully truncated

the simulation domain and increased the dynamic range of FDTD to more than 120 dB.

Since then, FDTD has been extensively applied to almost every aspect of electromagnetics.

As a numerical method, Yee’s algorithm is explicit, robust and easy to implement. More

importantly, Yee’s algorithm is able to model more complex materials than any other nu-

merical methods can do. However, this method suffers from dispersion errors which could

contaminate the solutions with nonphysical artifacts. A comprehensive introduction on the

Yee algorithm can be found in [10] – [14].

The continuous boost of the information industry during the last few decades has

profoundly changed the daily life of everyone. The demands for better information prod-

ucts and services, such as high-definition televisions, the future wireless LAN, and the

third-generation mobile communications, have been pushing the system operating frequency

higher due to the following reasons [3]. First of all, the lower end of the electromagnetic

spectrum are being rapidly depleted. The pursuit of higher bit rate, which requires more

bandwidth, can only be achieved at higher frequencies. Secondly, the system miniaturiza-

tion requires a smaller physical size of the antennas. However, the gain and bandwidth of

an antenna are proportional to its electrical size. Therefore, high gain and bandwidth are

only possible at a higher frequency. As a consequence of the general industry trend, the

operating frequency will continuously increase.
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A higher operating frequency means that the size of the platform that carries the

devices, such as a mobile vehicle, a commercial or military aircraft, becomes electrically

larger. This, however, presents challenges to the numerical methods due to the following:

• The simulations of the electrically large problems require to store vast, sometimes

prohibitive, amount of variables in computer memories. For example, for the FDTD

algorithms, the memory needed to store the electric and magnetic fields is proportional

to the product of the number of cells in each direction (Nx ×Ny ×Nz).

• Even if one can afford the demand of the astonishing amount of memory, the execution

time to run such a simulation for electrically large problems is extremely long.

• Even if one is patient enough to wait until the completion of the simulation, chances

are the results are totally contaminated by the numerical errors, especially the phase

errors due to the dispersion .

The currently standard FDTD algorithm (Yee’s scheme) is only second-order accurate

in both the space and time domains, and suffers from severe nonphysical dispersions. Based

on many analytical analysis and numerical experiments [1], it has been found that a cell size

of λ/10 − λ/20 provides acceptable accuracy for most problems with moderate electrical

size. However, the phase errors generated by dispersion accumulate as the traveling distance

of the wave and the simulation time increase. Consequently, for electrically large problems,

this rule of thumb may not be valid since the accumulation of the phase errors due to the

dispersion significantly deteriorate the accuracy. A simple way to reduce the dispersion

errors is to use a finer mesh resolution. This yields an even larger simulation domain

which aggravates the already heavy burden of the computer memory and CPU. In other
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words, the available computer resources limit the electrical size of the problems that can be

handled. Hence, the mesh refinement is not an efficient solution and sometimes not even

an alternative.

In reality, the dispersion is one of the inherent characteristics related to the FDTD

methods which cannot be completely eliminated. In order to minimize the dispersion,

many alternative approaches were proposed. These methods, in the broadest sense, can

be classified into two categories: the Standard FDTD (SFD) and the Nonstandard FDTD

(NSFD). The standard FDTD schemes are derived based upon the Taylor series expansion.

The coefficients of the stencils are chosen to minimize the truncation error and maximize

the order of accuracy. As a comparison, the nonstandard FDTD schemes consider the

minimization of dispersion as the ultimate goal. Instead of using the Taylor series expansion,

the coefficients of the NSFD stencils are derived directly from the dispersion relations.

Yee’s algorithm is a typical standard FDTD scheme with second-order accuracy in both

the time and space domains. Conventionally, an SFD method with Mth- and Nth-order

accuracy in the time and space domains, respectively, is referred to as the FDTD(M ,N)

scheme. For example, Yee’s algorithm can be also denoted as the FDTD(2,2) scheme. It

is a natural consideration to attempt to reduce the dispersion by increasing the stencil’s

order of accuracy. In 1989, Fang presented a scheme which is second-order accurate in

the time domain but fourth-order accurate in the space domain [15]. Fang’s algorithm is

also referred to as the FDTD(2,4) scheme. Since then, higher-order schemes quickly drew

the attention of the FDTD researchers and became one of the most promising dispersion-

reduction methods. Early exploration of Fang’s algorithm and other high-order FDTD

schemes includes [16]– [25]. A modified FDTD(2,4) scheme based on the integral form of
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Maxwell’s equations was introduced in [26], [27]. A second-order “isotropic” scheme using

complex multi-dimensional stencils was proposed in [28]. Contributions in the time-domain

discretization include: implicit time-integration schemes [29], [30] and higher-order time-

integration schemes [31] – [32]. Some intuitive reviews and computational efficiency analysis

of higher-order FDTD can be found in [33] – [36].

Another important type of method is the nonstandard FDTD (NSFD). The stencils of

the NSFD may be similar to the stencils of the SFD. However, the NSFD coefficients are

properly adjusted from their SFD counterparts for further dispersion reduction. Typically,

the values of the NSFD coefficients are determined by the Fourier analysis based on the dis-

persion relation. The concept of the NSFD was first proposed by Mickens [37]. Applications

of the NSFD in various mathematical and physical areas are summarized in [38], [39]. Cole

did the pioneering work in applying the NSFD to solve the Maxwell’s equations [40], [41]. To

minimize the anisotropy of the NSFD for multi-dimensions, Cole proposed a complex stencil

which is similar to the one used in [28]. Afterwards, the NSFD scheme is modified to be able

to model the lossy and absorbing materials [42], [43]. A full dispersion and stability analysis

for the 3D Cole’s scheme can be found in [44], [45]. Furthermore, Cole’s scheme is expanded

to even more complex stencils and curvilinear coordinate systems in [46]– [52]. In order

to reduce the average dispersion error without using the complex stencils, [53]– [55] uses

dispersion centering technique originated in [1]. Then, a scheme that can control the disper-

sion level in a certain range of propagation angles was presented by introducing a filtering

process [56], [57]. Although proposed independently by different research groups, [58]– [65]

indicated that the dispersion error can be drastically reduced by using degenerated fourth-

order stencils. That is, the coefficients of the fourth-order stencil are deliberately adjusted
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to further reduce the dispersion. The cost is that the accuracy of the fourth-order stencil is

degenerated to second-order. Comparisons of the dispersion properties of Cole’s and other

low-dispersion algorithms can be found in [66], [67].

In order to further decrease the dispersion error, the previously stated standard and

nonstandard FDTD schemes both use extended stencils. The extended stencils represent

those finite difference operators that involve more than two points. For example, Fang’s

FDTD(2,4) scheme is considered to be a simple extended stencil with four points. Typ-

ically, if more points are included into the stencil, more coefficients (degrees of freedom)

can be used to mitigate the dispersion. The coefficients of the extended stencils can be

derived using either the Taylor series expansion (SFD) or dispersion analysis (NSFD). In a

homogeneous region, the schemes using the extended stencils work perfectly well. However,

significant nonphysical errors will be generated at the material interface. These errors could

be attributed to the field discontinuities along each side of the material interface. Many

efforts have been devoted to restore the accuracy of the extended stencils across the ma-

terial interface [68]– [71]. Moreover, a subgridding technique to hybridize the FDTD(2,2)

and the FDTD(2,4) [72] – [76] was introduced. The FDTD(2,4) scheme is only used in

the homogeneous regions. However, along the material interfaces and the domain bound-

aries, the FDTD(2,2) scheme is applied. Along the interface between the FDTD(2,2) and

FDTD(2,4) domains, the fields are carefully coupled. This method does not require any

special treatment for the material interface.

All of the conventional FDTD(2,2) truncation techniques, such as the PML, can be

used without modifications. However, the hybrid scheme is still second-order accurate

and the programming is cumbersome. Alternative approaches include the one-sided sten-
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cils [77], [78]. The derivatives near the material interface are approximated using points only

along one side of the interface. However, as reported in [77], the accuracy of the one-sided

stencil degenerates quickly when the discontinuity is aggravated. Originated in [79], [80], a

derivative matching method was proposed [81]. This method introduces fictitious points at

both sides of the material interface and physically enforces the boundary conditions. Using

this technique, consistent stencils can be applied throughout the entire domain. In [81], it

has been shown that the accuracy of the schemes (up to eighth-order) are fully restored.

Another method [82]– [84] is based on the Fourier analysis of the numerical reflection co-

efficient which is very similar as the derivation of the NSFD schemes. Although originally

presented for Yee’s algorithm, this method seems very promising for the extended sten-

cils. Useful reviews on the state-of-art progresses in the extended stencil and the material

interface treatments can be found in [85], [86].

It has been indicated that the dispersion can be reduced significantly by using the

NSFD methods. However, the following technical issues still need to be considered.

• For multi-dimensional problems, the NSFD schemes still suffer from serious nonphys-

ical anisotropic errors. Methods to decrease the anisotropy without significantly in-

creasing the computational burden are still highly desired.

• The current available approaches to determine the values of the stencil coefficients

become very cumbersome for more complex schemes. Simple approaches to solve the

optimal coefficients are still needed.

• Some principal concerns for the NSFD algorithms, such as the Gauss’s Law, have not

been examined yet.
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• The available techniques treating the material interface are far from practical. Ironi-

cally, it is usually much easier to design a very complex stencil than the corresponding

interface conditions. Proper material interface conditions are still the greatest chal-

lenge in this area.

With the increase of the operating frequency, electromagnetic compatibility (EMC)

and electromagnetic interference (EMI) issues become incrementally more important. One

of the most critical EMI concern is that the aircraft navigation/communication antennas

could be interfered by the radiation emission generated by on-board personal electronic

devices (PEDs), such as cellphones, laptops, etc. That is the reason for switching off all

the personal electronic devices during the take-off and landing, if not during the entire

flight. This EMI issue has be studied by characterizing the mutual coupling between an

on-board PED antenna and an aircraft antenna mounded on the exterior of a simplified

Boeing 757 fuselage [72]. However, the fuselage cavity in the previous research was empty.

In practice, the fuselage is always filled with various metallic frames, decoration materials

and passengers. Among these materials, the human body could be the most important due

to its highly dielectric and lossy property. The impact of the present passengers on the EMI

characteristics still remains a question.

In this project, the major objective is to resolve or at least mitigate the aforementioned

technical problems for the nonstandard FDTD methods. The passenger effects on the PED

mutual coupling will also be examined. The structural organization of this report is now

outlined. In Chapter 2, the fundamental principles of the electromagnetics will be first

reviewed. Then the basic theory of the standard FDTD, including the FDTD(2,2) (Yee’s)
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and other higher-order schemes, will be presented. A detailed dispersion analysis, which

forms the basis of the nonstandard FDTD, on various standard FDTD algorithms will also

be discussed.

Chapter 3 is focused on the nonstandard FDTD. We will go through the fundamental of

the one-dimensional NSFD algorithm. Dispersion analysis and numerical simulations will be

presented to reveal the strength and weakness of the 1D NSFD. An NSFD(2,4) scheme will

also be introduced by incorporating the concept of NSFD into the fourth-order stencil. The

NSFD algorithms will then be extended to multi-dimensional cases. To reduce the average

dispersion error, an improved NSFD algorithm will be presented. A simple least squares

method will be used to determine the optimal stencil coefficients. Afterwards, the concept

of the NSFD will be generalized. Dispersion analysis will be presented to demonstrate the

performance of the generalized NSFD. Then, the Gauss’s Laws in both the differential and

integral forms will be examined for the NSFD algorithms. Finally, a material interface

condition based on the concept of the NSFD will be proposed to decrease the errors caused

by the material interface.

In Chapter 4, the passenger’s effect on the PED mutual coupling will be investigated.

The mutual coupling between the antennas is described by the S-parameters. A simplified

passenger model was designed and built to fit into the fuselage model. The S-parameters

will be simulated using the FDTD algorithm. To justify the simulations, same parameters

are measured using the vector network analyzer in the electromagnetic anechoic chamber

of Arizona State University. Finally, the S-parameters with and without passengers are

compared to demonstrate the passenger’s effect.



CHAPTER 2

THE STANDARD FINITE-DIFFERENCE METHODS

As indicated in the precious chapter, the Standard Finite-Difference Time-Domain

Method (SFD) is an important type of FDTD schemes that is derived directly using the

Taylor series expansion. The simplest SFD method, Yee’s algorithm, is the currently

most popular FDTD scheme that has been extensively applied to many electromagnetic

boundary-value problems, for example, antenna modeling, radiation/scattering, microwave

circuits design, and EMC/EMI analysis, etc. However, Yee’s algorithm is only second-order

accurate in both the time and space domain. Hence it suffers from severe dispersion error

especially for the electrically larger problems. In order to reduce the dispersion error, one of

the most promising methods is to use the higher-order SFD method (HOSFD). Usually, a

central-difference space stencil using N points could achieve an order of accuracy up to N -th

order. However, the accuracy of the entire scheme also depends on the time-domain dis-

cretization and the type of the problems. Moreover, due to the discontinuities of the fields,

significant errors can be generated along the material interface which will deteriorate the ac-

curacy of the entire HOSFD method to be similar as that of Yee’s algorithm [85], [86]. Since

increasing the number of points doses not achieve the desirable accuracy, many advances

on the HOSFD only consider Fang’s FDTD(2,4) scheme, which is second-order accurate in

the time domain but fourth-order accurate in the space domain.

In this chapter, the fundamental principles of any numerical method, i.e. Maxwell’s

equations, will be first reviewed. Then the theory of Yee’s algorithm will be introduced. A

general procedure to derive the SFD stencils with high order of accuracy will follow. The

stability conditions for the SFD methods will be discussed. Finally, a detailed dispersion
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analysis for Yee’s and Fang’s algorithms, which are also the base of the nonstandard FDTD

methods, will be presented.

2.1. Fundamental Principals

Time-varying electromagnetic phenomena are initial boundary-value problems. In a

homogeneous region, these problems are fully described by Maxwell’s equations. Along the

material discontinuities, proper boundary conditions must be enforced. Maxwell’s equations

can be written either in differential or in integral form.

The differential form of Maxwell’s equations is most widely used since it governs the

relations between field vectors, current densities, and charge densities at any point in space

at any time. For a homogeneous region, Maxwell’s equations in differential form can be

written as

∇×E = −∂B
∂t

−Mc −Mi (2.1)

∇×H =
∂D
∂t

+ Jc + Ji (2.2)

∇ ·D = qe (2.3)

∇ ·B = qm (2.4)

where E is the electric field intensity in (volts/meter), H is the magnetic field intensity

in (amperes/meter), D is the electric flux density in (coulombs/square meter), B is the

magnetic flux density in (webers/square meter), Jc and Ji are the conduction and impressed

electric current densities, respectively, in (amperes/square meter), Mc and Mi are the

conduction and impressed magnetic current densities, respectively, in (volts/square meter),

qe is the electric charge density in (coulombs/cubic meter), and qm is the magnetic charge
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density in (webers/cubic meter). Individually, (2.1)-(2.4) are also referred to as Faraday’s

Law, Ampere’s Law, Gauss’s Law for electric field, and Gauss’s Law for magnetic field,

after the names of their discoverers.

The integral form of Maxwell’s equations describes relations of the field vectors, current

densities, and charge densities over an extended region of space. The integral form of

Maxwell’s equations can be written as

∮

C
E · dl = − ∂

∂t

∫ ∫

S
B · ds−

∫ ∫

S
Mc · ds−

∫ ∫

S
Mi · ds (2.5)

∮

C
H · dl =

∂

∂t

∫ ∫

S
D · ds +

∫ ∫

S
Jc · ds +

∫ ∫

S
Ji · ds (2.6)

∮

S
D · ds = Qe (2.7)

∮

S
B · ds = Qm (2.8)

where Qe and Qm are the total electric and magnetic charges, respectively.

In materials with constitutive parameters that are independent of time, the electric and

magnetic flux densities (D and B) are related to the electric and magnetic field intensities

E and H using the constitutive relations

D = εE (2.9)

B = µH (2.10)

where ε is the electrical permittivity of the medium in (Farad/meter) and µ is the magnetic

permeability of the medium in (Henries/meter). For free space, ε and µ are constants which

can be written as

ε0 = 8.854× 10−12 (Farads/meter) (2.11)
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µ0 = 4π × 10−7 (Henries/meter) (2.12)

Moreover, the conduction electric current density Jc and the conduction magnetic

current density Mc are related to the electric and magnetic field intensities E and H using

the Ohm’s laws

J = σE (2.13)

M = σ∗H (2.14)

where σ is the electrical conductivity in (Siemens/meter) and σ∗ is the magnetic conduc-

tivity in (Ohms/meter).

In order to completely describe the electromagnetic phenomena, appropriate boundary

conditions must be enforced along the interfaces where the media exhibit discontinuities.

Assuming there are no sources present, along a interface formed by two media with electric

properties (ε1,µ1) and (ε2,µ2), the boundary conditions can be expressed as

n̂× (E1 −E2) = 0 (2.15)

n̂× (H1 −H2) = 0 (2.16)

n̂ · (D1 −D2) = 0 (2.17)

n̂ · (B1 −B2) = 0 (2.18)

where n̂ is the unit vector normal to the interface, pointing from medium 2 into medium

1. A very important special case is that medium 2 is a perfect electric conductor (PEC).

Since the fields inside the PEC are zero, (2.15)-(2.16) reduce to

n̂×E1 = 0 (2.19)
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n̂×H1 = 0 (2.20)

That is, along the PEC interface, the tangential components of the electric and magnetic

fields are zero.

The two curl equations of (2.1)-(2.2) form the basis of the FDTD algorithm for solving

3D electromagnetic problems. Usually, the two Gauss’s Laws of (2.3)-(2.4) will not be

explicitly implemented in FDTD. However, to avoid the risk of introducing artificial charges

into the domain, it is very important to check whether or not the two Gauss’s laws are

implicitly satisfied by any FDTD algorithm.

2.2. The Standard FDTD(2,2) (Yee’s) Algorithm

As the simplest case of the SFD schemes, the FDTD(2,2) (Yee’s) algorithm is second-

order accurate in both the time and space domains. In other words, the time and space

derivatives in Maxwell’s equations are replaced by the second-order central difference ap-

proximations. Letting f(ξ, t) represent an arbitrary function of space and time, this can be

expressed as

∂f(ξ, t)
∂ξ

=
f(ξ + ∆ξ/2, t)− f(ξ −∆ξ/2, t)

∆ξ
+ O (∆ξ2), ξ = x, y, z (2.21)

∂f(ξ, t)
∂t

=
f(ξ, t + ∆t/2)− f(ξ, t + ∆t/2)

∆t
+ O (∆t2) (2.22)

Conventionally, the finite difference approximations (2.21)-(2.22) are also referred to

as the space and time stencils, respectively. For example, the space stencil along the x-axis

is illustrated in Fig. 2.1. As shown, in order to evaluate the partial derivative ∂f/∂x at the

center point x, one needs to calculate the difference between the two neighboring values at

x−∆x/2 and x + ∆x/2; then divide it by the distance between them (∆x). The constants
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Fig. 2.1. Second-order central difference stencil along the x direction.

above each point are the weighting coefficients which can be derived from Taylor series

expansion.

Before the introduction of Yee’s algorithm, the notations that follows will be introduced

and used repeatedly. In Cartesian coordinates, the space steps with respect to x, y, and z

directions and the time increment are denoted as ∆x, ∆y, ∆z, and ∆t, respectively. The

space position at (i∆x, j∆y, k∆z) is represented by the space indices (i, j, k). The time

instant n∆t is represented by the time index n. Following these notations, an arbitrary grid

function at time t = n∆t can be expressed as f |ni,j,k.

To demonstrate Yee’s algorithm, let us assume that a plane wave is traveling in the z

direction in an unbounded, homogeneous medium (ε, µ, σ, σ∗). Without loss of generality,

we also assume that the plane wave has an Ex component and a magnetic field component

Hy, as illustrated in Fig. 2.2.

In Cartesian coordinates, the plane wave can be modeled using the one-dimensional

Maxwell’s equations which can be written as

∂Ex

∂t
= −1

ε

(
∂Hy

∂z
+ σEx

)
(2.23)
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Fig. 2.2. One-dimensional plane wave.

∂Hy

∂t
= − 1

µ

(
∂Ex

∂z
+ σ∗Hy

)
(2.24)

The space and time derivatives in (2.23) and (2.24) can be approximated by the central

differences introduced in (2.21),(2.22). Staggering the E and H fields by half-cell in the

space domain and using the leapfrog scheme in the time domain, the one-dimensional Yee’s

algorithm can be expressed as [6], [1].

Ex|n+1/2
k = Ca(k) Ex|n−1/2

k − Cb(k)(Hy|nk+1/2 − Hy|nk−1/2) (2.25)

Hy|n+1
k+1/2 = Da(k + 1/2) Hy|nk+1/2 −Db(k + 1/2)(Ex|n+1/2

k+1 − Ex|n+1/2
k ) (2.26)

where

Ca(k) =
1− (σk∆t)/(2εk)
1 + (σk∆t)/(2εk)

(2.27)

Cb(k) =
∆t/(εk∆z)

1 + (σk∆t)/(2εk)
(2.28)

Da(k) =
1− (σ∗k∆t)/(2µk)
1 + (σ∗k∆t)/(2µk)

(2.29)

Db(k) =
∆t/(µk∆z)

1 + (σ∗k∆t)/(2µk)
(2.30)
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Fig. 2.3. Time-space chart for the one-dimensional Yee algorithm.

are the update coefficients. Notice that ε and σ take the values at the positions where the

E fields are located and µ and σ∗ take the values where the H fields are located.

Yee’s algorithm can be also explained using a time-space chart illustrated in Fig. 2.3

[13]. As shown, to update the Ex field at (k, n+1/2), one needs the Ex field at (k, n− 1/2)

and the Hy fields at (k − 1/2, n) and (k + 1/2, n). After that, the updated Ex field at

(k, n + 1/2), together with the Ex field at (k + 1, n + 1/2) and the Hy field at (k + 1/2, n),

will be used to update the Hy field at (k + 1/2, n + 1). This progress continues until the

time advance is terminated.

In two dimensions, electromagnetic boundary-value problems can be classified by two

modes; i.e., TEz and TM z modes. In Cartesian coordinates, Maxwell’s equations for TEz
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modes in general lossy media can be written as [2]

∂Ex

∂t
=

1
ε

(
∂Hz

∂y
− σEx

)
(2.31)

∂Ey

∂t
= −1

ε

(
∂Hz

∂x
+ σEy

)
(2.32)

∂Hz

∂t
=

1
µ

(
∂Ex

∂y
− ∂Ey

∂x
− σ∗Hz

)
(2.33)

For the dual TM z modes, Maxwell’s equations can be expressed as [2]

∂Hx

∂t
= − 1

µ

(
∂Ez

∂y
+ σ∗Hx

)
(2.34)

∂Hy

∂t
=

1
µ

(
∂Ez

∂x
− σ∗Hy

)
(2.35)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(2.36)

Staggering the electric and magnetic fields in both the x and y directions, the two-

dimensional Yee’s grids for TEz and TM z modes are demonstrated in Figs. 2.4 and 2.5,

respectively.

In the time domain, the leap-frog scheme is used to discretize the time derivatives.

Following a similar procedure as for one-dimensional problems, the two-dimensional Yee’s

algorithms for and TEz and TM z modes take the form of [6], [1]
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Fig. 2.4. Two-dimensional Yee’s grids (TEz).

Fig. 2.5. Two-dimensional Yee’s grids (TM z).
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TEz mode:

Ex|n+1/2
i+1/2,j = Ca(i + 1/2, j) Ex|n−1/2

i+1/2,j

+ Cby(i + 1/2, j)(Hz|ni+1/2,j+1/2 − Hz|ni+1/2,j−1/2) (2.37)

Ey|n+1/2
i,j+1/2 = Ca(i, j + 1/2) Ey|n−1/2

i,j+1/2

− Cbx(i, j + 1/2)(Hz|ni+1/2,j+1/2 − Hz|ni−1/2,j+1/2) (2.38)

Hz|n+1
i+1/2,j+1/2 = Da(i + 1/2, j + 1/2) Hz|ni+1/2,j+1/2

+ Dby(i + 1/2, j + 1/2)(Ex|n+1/2
i+1/2,j+1 − Ex|n+1/2

i+1/2,j)

− Dbx(i + 1/2, j + 1/2)(Ey|n+1/2
i+1,j+1/2 − Ey|n+1/2

i,j+1/2) (2.39)

TM z mode:

Hx|n+1
i+1/2,j = Da(i + 1/2, j) Hx|ni+1/2,j

− Dby(i + 1/2, j)(Ez|n+1/2
i+1/2,j+1/2 − Ez|n+1/2

i+1/2,j−1/2) (2.40)

Hy|n+1
i,j+1/2 = Da(i, j + 1/2) Hy|ni,j+1/2

− Dbx(i, j + 1/2)(Ez|n+1/2
i+1/2,j+1/2 − Ez|n+1/2

i−1/2,j+1/2) (2.41)

Ez|n+1/2
i+1/2,j+1/2 = Ca(i + 1/2, j + 1/2) Ez|n−1/2

i+1/2,j+1/2

− Cby(i + 1/2, j + 1/2)(Hx|ni+1/2,j+1 − Hx|ni+1/2,j)

− Cbx(i + 1/2, j + 1/2)(Hy|ni+1,j+1/2 − Hy|ni,j+1/2) (2.42)
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where

Ca(i, j) =
1− (σi,j∆t)/(2εi,j)
1 + (σi,j∆t)/(2εi,j)

(2.43)

Cbξ(i, j) =
∆t/(εi,j∆ξ)

1 + (σi,j∆t)/(2εi,j
, ξ = x, y (2.44)

Da(i, j) =
1− (σ∗i,j∆t)/(2µi,j)
1 + (σ∗i,j∆t)/(2µi,j)

(2.45)

Dbξ(i, j) =
∆t/(µi,j∆ξ)

1 + (σ∗i,j∆t)/(2µi,j)
, ξ = x, y (2.46)

In the three-dimensional Cartesian coordinates, Maxwell’s equations of (2.1) and (2.2)

reduce to a system of six coupled scalar equations which can be expressed as [2]

∂Hx

∂t
=

1
µ

(
∂Ey

∂z
− ∂Ez

∂y
− σ∗Hx

)
(2.47)

∂Hy

∂t
=

1
µ

(
∂Ez

∂x
− ∂Ex

∂z
− σ∗Hy

)
(2.48)

∂Hz

∂t
=

1
µ

(
∂Ex

∂y
− ∂Ey

∂x
− σ∗Hz

)
(2.49)

∂Ex

∂t
=

1
ε

(
∂Hz

∂y
− ∂Hy

∂z
− σEx

)
(2.50)

∂Ey

∂t
=

1
ε

(
∂Hx

∂z
− ∂Hz

∂x
− σEy

)
(2.51)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(2.52)

To solve three-dimensional problems, the space domain is discretized using the Yee’s unit

cell, as illustrated in Fig. 2.6. As shown, all the field components are located at different

positions on the surface of the Yee cell. The E and H fields are staggered at a distance

of half space-step which allows the explicit evaluation of the curls at each surface plane.

Different constitutive parameters are locally assigned to each field component to model

different materials. Using the leap-frog scheme in the time-domain, the three-dimensional
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Fig. 2.6. The three-dimensional Yee’s unit cell [1].

Yee update equations are given by [6], [1]

Ex|n+1/2
i+1/2,j,k = Ca(i + 1/2, j, k) Ex|n−1/2

i+1/2,j,k

+ Cby(i + 1/2, j, k)(Hz|ni+1/2,j+1/2,k − Hz|ni+1/2,j−1/2,k)

− Cbz(i + 1/2, j, k)(Hy|ni+1/2,j,k+1/2 − Hy|ni+1/2,j,k−1/2) (2.53)

Ey|n+1/2
i,j+1/2,k = Ca(i, j + 1/2, k) Ey|n−1/2

i,j+1/2,k

+ Cbz(i, j + 1/2, k)(Hx|ni,j+1/2,k+1/2 − Hx|ni,j+1/2,k−1/2)

− Cbx(i, j + 1/2, k)(Hz|ni+1/2,j+1/2,k − Hz|ni−1/2,j+1/2,k) (2.54)

Ez|n+1/2
i,j,k+1/2 = Ca(i, j, k + 1/2) Ez|n−1/2

i,j,k+1/2

+ Cbx(i, j, k + 1/2)(Hy|ni+1/2,j,k+1/2 − Hy|ni−1/2,j,k+1/2)

− Cby(i, j, k + 1/2)(Hx|ni,j+1/2,k+1/2 − Hx|ni,j−1/2,k+1/2) (2.55)
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Hx|n+1
i,j+1/2,k+1/2 = Da(i, j + 1/2, k + 1/2) Hx|ni,j+1/2,k+1/2

+ Dbz(i, j + 1/2, k + 1/2)(Ey|n+1/2
i,j+1/2,k+1 − Ey|n+1/2

i,j+1/2,k)

− Dby(i, j + 1/2, k + 1/2)(Ez|n+1/2
i,j+1,k+1/2 − Ez|n+1/2

i,j,k+1/2) (2.56)

Hy|n+1
i+1/2,j,k+1/2 = Da(i + 1/2, j, k + 1/2) Hy|ni+1/2,j,k+1/2

+ Dbx(i + 1/2, j, k + 1/2)(Ez|n+1/2
i+1,j,k+1/2 − Ez|n+1/2

i,j,k+1/2)

− Dbz(i + 1/2, j, k + 1/2)(Ex|n+1/2
i+1/2,j,k+1 − Ex|n+1/2

i+1/2,j,k) (2.57)

Hz|n+1
i+1/2,j+1/2,k = Da(i + 1/2, j + 1/2, k) Hz|ni+1/2,j+1/2,k

+ Dby(i + 1/2, j + 1/2, k)(Ex|n+1/2
i+1/2,j+1,k − Ex|n+1/2

i+1/2,j,k)

− Dbx(i + 1/2, j + 1/2, k)(Ey|n+1/2
i+1,j+1/2,k − Ey|n+1/2

i,j+1/2,k) (2.58)

where

Ca(i, j, k) =
1− (σi,j,k∆t)/(2εi,j,k)
1 + (σi,j,k∆t)/(2εi,j,k)

(2.59)

Cbξ(i, j, k) =
∆t/(εi,j,k∆ξ)

1 + (σi,j,k∆t)/(2εi,j,k
, ξ = x, y, z (2.60)

Da(i, j, k) =
1− (σ∗i,j,k∆t)/(2µi,j,k)
1 + (σ∗i,j,k∆t)/(2µi,j,k)

(2.61)

Dbξ(i, j, k) =
∆t/(µi,j,k∆ξ)

1 + (σ∗i,j,k∆t)/(2µi,j,k)
, ξ = x, y, z (2.62)

Despite its second-order accuracy, Yee’s algorithm is the most popular FDTD method

for computational electromagnetics. For years, it has been successfully applied to solve nu-

merous practical electromagnetic problems. There is a large collection of models simulated

by Yee’s grid, from a small IC package to a large fuselage. When a dispersion-reduction

method is designed, it is usually desired that the new algorithm is able to take advantage

of the available geometry library. In other words, the new dispersion-reduction scheme

must also use Yee’s grid. One of the most promising approaches is to use the standard
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higher-order schemes.

2.3. The Standard Higher-Order Schemes

The standard higher-order schemes denote those methods which use the finite-difference

approximations with accuracy higher than second-order. Higher-order stencils can be used

to discretize the derivatives in both the time- and the space-domain. For clarity, we only

consider the space-domain higher-order stencils. In the time domain, the second-order

stencil is still used. Hence, the standard higher-order methods in this report can be referred

to as the FDTD(2,N) schemes. Notice that, for the central difference stencils, N is always

an even integer. To be compatible to the the available geometry file, Yee’s grids are used

for the space discretization.

Before the discussion of the characteristics of the higher-order stencils, the method to

derive these stencils will be introduced. For example, to approximate the derivative at the

center point, the central difference approximation involving four neighboring points can be

expressed as

f ′ (ξ) ≈
C1f

(
ξ − 3∆ξ

2

)
+ C2f

(
ξ − ∆ξ

2

)
+ C3f

(
ξ + ∆ξ

2

)
+ C4f

(
ξ + 3∆ξ

2

)

∆ξ
(2.63)

ξ = x, y, z

where the four coefficients C1, C2, C3, and C4 are undetermined. Expanding the function



27

values at the four neighboring points yields

f

(
ξ − 3∆ξ

2

)
= f (ξ)− 3∆ξ

2
f ′ (ξ) +

9∆ξ2

8
f ′′ (ξ)− 9∆ξ3

16
f ′′′ (ξ) +

27∆ξ4

128
f (4) (ξ)

− 81∆ξ5

1280
f (5) (ξ) + · · · (2.64)

f

(
ξ − ∆ξ

2

)
= f (ξ)− ∆ξ

2
f ′ (ξ) +

∆ξ2

8
f ′′ (ξ)− ∆ξ3

48
f ′′′ (ξ) +

∆ξ4

384
f (4) (ξ)

− ∆ξ5

3840
f (5) (ξ) + · · · (2.65)

f

(
ξ +

∆ξ

2

)
= f (ξ) +

∆ξ

2
f ′ (ξ) +

∆ξ2

8
f ′′ (ξ) +

∆ξ3

48
f ′′′ (ξ) +

∆ξ4

384
f (4) (ξ)

+
∆ξ5

3840
f (5) (ξ) + · · · (2.66)

f

(
ξ +

3∆ξ

2

)
= f (ξ) +

3∆ξ

2
f ′ (ξ) +

9∆ξ2

8
f ′′ (ξ) +

9∆ξ3

16
f ′′′ (ξ) +

27∆ξ4

128
f (4) (ξ)

+
81∆ξ5

1280
f (5) (ξ) + · · · (2.67)

Substituting (2.64)-(2.67) into (2.63) and collecting terms leads to

f ′ (ξ) ≈ (C1 + C2 + C3 + C4)
1

∆ξ
f (ξ)

+ (−3C1 − C2 + C3 + 3C4)
1
2
f ′ (ξ)

+ (9C1 + C2 + C3 + 9C4)
∆ξ

8
f ′′ (ξ)

+ (−27C1 − C2 + C3 + 27C4)
∆ξ2

48
f ′′′ (ξ)

+ (81C1 + C2 + C3 + 81C4)
∆ξ3

384
f (4) (ξ)

+ (−243C1 − C2 + C3 + 243C4)
∆ξ4

3840
f (5) (ξ)

+ · · · (2.68)

In order to approximate the derivative, the coefficient of the second term in (2.68) must

be unity. Furthermore, to achieve the accuracy as high as possible, the coefficients for the
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first, third and fourth terms must be zero. This leads to the following matrix equation



1 1 1 1

−3 −1 1 3

9 1 1 9

−27 −1 1 27




·




C1

C2

C3

C4




=




0

2

0

0




(2.69)

Solving (2.69), the unknown coefficients C1, C2, C3, and C4 are determined to be

1/24,−9/8, 9/8, and −1/24, respectively. The resultant stencil of fourth-order accuracy

can thus be written as

f ′ (ξ) =
9
8

[f(ξ + ∆ξ/2)− f(ξ −∆ξ/2)]
∆ξ

− 1
24

[f(ξ + 3∆ξ/2)− f(ξ − 3∆ξ/2)]
∆ξ

− 3∆ξ4

640
f (5)(ξ) + · · ·

=
9
8

[f(ξ + ∆ξ/2)− f(ξ −∆ξ/2)]
∆ξ

− 1
24

[f(ξ + 3∆ξ/2)− f(ξ − 3∆ξ/2)]
∆ξ

+ O (∆ξ4),

ξ = x, y, z (2.70)

where the (−3∆ξ4)f (5)(ξ) is the leading truncation error which mainly determines the

order of accuracy of the stencil. For example, the fourth-order stencil in the x direction is

illustrated in Fig. 2.7. Apparently, in order to evaluate the derivative at the center point,

one needs to use the function values of the four neighboring values. The number above each

point is the weighting coefficient for the summation. The method summarized in (2.63)-

(2.70) is referred to as the method of the undetermined coefficients [87]. In general, this

method can be used to evaluate the derivative not only at the central point, but also at an

arbitrary position in the grid.
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Fig. 2.7. Fourth-order central difference stencil along the x direction.

From observation, for central difference, the only difference of the coefficients at the

symmetrical points is a minus sign. Therefore, a central difference stencil of N -th order (N

is an even integer) can be expressed as [15], [86]

f ′ (ξ) ≈ 1
∆ξ

N/2∑

n=1

Cn{f [ξ + (2n− 1)∆ξ]− f [ξ − (2n− 1)∆ξ]} (2.71)

Applying the method of the undetermined coefficients leads to the following N/2 × N/2

linear system 


1 3 · · · N − 1

1 33 · · · (N − 1)3

...
...

. . .
...

1 3N−1 · · · (N − 1)N−1




·




C1

C2

...

CN/2




=




1

0

...

0




(2.72)

The solution of (2.72) can be written in close form as [86]

Cn =
(−1)n−1(N − 1)!!2

2N−2(N/2 + n− 1)!(N/2− n)!(2n− 1)2
(2.73)

where x!! represents x(x− 2)(x− 4) . . . . The leading truncation error can be written as

ErrT =
∆ξNf (N+1)(ξ)
2N (N + 1)!

N/2∑

n=1

Cn(2n− 1)N+1 (2.74)
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The coefficients and the truncation errors for the central difference stencils up to eighth-

order accurate are summarized in Table 2.1 [67], [86].

Table 2.1. Coefficients and Truncation Errors of the Central Difference Stencils

N C1 C2 C3 C4 ErrT

2 1 0 0 0 ∆ξ2

24 f (3)(ξ)

4 9
8 − 1

24 0 0 −3∆ξ4

640 f (5)(ξ)

6 75
64 − 25

384
3

640 0 5∆ξ6

7168 f (7)(ξ)

8 1225
1024 − 245

3072
49

5120 − 5
7168 − 35∆ξ8

294912f (9)(ξ)

Notice that the truncation errors all have the similar structure which can be expressed

as [87]

ErrT (∆ξ) ≈ C∆ξN (2.75)

where C is a constant determined by the (N + 1)-th derivative. Taking the logarithm of

both sides of (2.75) yields

log
[
ErrT (∆ξ)

] ≈ log C + N log ∆ξ (2.76)

That is, log[ErrT (∆ξ)] is a linear function of log ∆ξ with slope N . For example, let us

approximate the derivative of f(ξ) = cos (ξ) at ξ = 1. The log-log plots of the truncation

errors in Table 2.1 versus 1/(∆ξ) are shown in Fig. 2.8. It is evident that the slopes of the

lines agree with the corresponding order of accuracy. For this case, increasing the order of

accuracy greatly reduces the errors.
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Fig. 2.8. Truncation error of the central difference stencils.

To apply the higher-order scheme, one only need to replace the second-order space-

domain stencils in Yee’s update equations (2.53) - (2.58) by the higher-order stencils (2.71).

The leap-frog scheme and Yee’s grids remain the same.

2.4. Stability Condition

In order to guarantee the convergence of the numerical solution, the time step ∆t

must be bounded. This bound is usually referred to as the Courant Stability Condition [1].

Using the complex analysis of the dispersion relation [1] or the classical Von Neumann

method [88], [14], the stability conditions for the one-, two-, and three-dimensional Yee

algorithms can be expressed as
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One-dimension:

∆t ≤ ∆x

c
(2.77)

Two-dimensions:

∆t ≤ 1

c
√

1
∆x2 + 1

∆y2

(2.78)

Three-dimensions:

∆t ≤ 1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

(2.79)

where ∆t is the time step, c is the speed of light, and ∆x,∆y,∆z are space steps with

respect to x, y, z axes, respectively. For the cubic mesh where (∆x = ∆y = ∆z = ∆s), the

stability conditions of (2.77)-(2.79) reduce to

One-dimension:

S =
c∆t

∆s
≤ 1 (2.80)

Two-dimensions:

S =
c∆t

∆s
≤ 1√

2
(2.81)

Three-dimensions:

S =
c∆t

∆s
≤ 1√

3
(2.82)

where the constant S is the Courant number which describes the relation between c, ∆t,

and ∆s.

The stability conditions for the higher-order schemes have to be derived individually.

Here, the stability condition for the important FDTD(2,4) scheme is summarized [1]

One-dimension:

∆t ≤ 6
7

∆x

c
(2.83)
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Two-dimensions:

∆t ≤ 6
7

1

c
√

1
∆x2 + 1

∆y2

(2.84)

Three-dimensions:

∆t ≤ 6
7

1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

(2.85)

For the cubic mesh, (2.83) - (2.85) reduce to

One-dimension:

S =
c∆t

∆s
≤ 6

7
(2.86)

Two-dimensions:

S =
c∆t

∆s
≤ 6

7
1√
2

(2.87)

Three-dimensions:

S =
c∆t

∆s
≤ 6

7
1√
3

(2.88)

2.5. Dispersion Analysis

The standard FDTD algorithms are the discrete conterparts of Maxwell’s equations.

It is inevitable that, when the continuous derivatives and domains are discretized, some

numerical errors are generated. Among these errors, the numerical dispersion is the most

critical. Dispersion is a nonphysical numerical effect meaning that the numerical phase

velocity of the wave is a function of the grid discretization, operating frequency, and propa-

gation angles. As indicated in [1]: “A useful way to view this phenomenon is that the FDTD

algorithm effectively embeds the electromagnetic wave interaction structure of interest in

a tenuous ‘numerical aether’ having a permittivity very close to vacuum, but not quite.

This ‘aether’ causes propagating waves to accumulate delay or phase errors that can lead
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to non-physical results, such as broadening and ringing of single-pulse waveforms, imprecise

cancelation of multiple scattered waves, spurious anisotropy, and pseudo-refraction.” Thus

the accumulation of the dispersion error can be significant to destroy the final results, es-

pecially for problems that contain electrically large structures or need very long simulation

time. Fourier analysis has been used to investigate the the numerical dispersion of a variety

of FDTD algorithms [1], [66], [67]. In this section, the dispersion characteristics of the

standard FDTD schemes will be reviewed.

2.5.1. The FDTD(2,2) Scheme

Let us consider the one-dimensional Yee algorithm in a free-space region. An 1D

monochromatic numerical wave can be expressed as

Ex = E0e
j(ωn∆t−k̃K∆z) (2.89)

Hy = H0e
j(ωn∆t−k̃K∆z) (2.90)

where k̃ is the numerical wave number, K is the space index in the z-direction used to

distinguish itself from the wave number. Substituting (2.89)-(2.90) into the finite difference

equations (2.25)-(2.26) for the free-space case and combining the resultant equations yields

(
∆z

c∆t

)2

sin2

(
ω∆t

2

)
= sin2

(
k̃∆z

2

)
(2.91)

Such a nonlinear equation that describes the relationship between the numerical wave num-

ber k̃ (or numerical phase speed) and the angular frequency ω is referred to as the dispersion

relation. Apparently, the numerical wave number is no longer a linear function of the an-

gular frequency as is the case in the continuous world.
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Fig. 2.9. One-dimensional dispersion of the Yee algorithm.

Using S and N to denote the Courant number c∆t/∆z and the mesh resolution λ/∆z

(where λ is the exact wavelength), (2.91) can be rewritten in a more convenient form [1], [66]

as

1
S2

sin2

(
πS

N

)
= sin2

(
π

N

k̃

k

)
(2.92)

where k̃/k is the ratio of the numerical wave number to the exact wave number, which

describes the amount of discrepancy between them. Notice that k̃/k = 1 represents the

ideal no-dispersion case. For one-dimension, the dispersion relation (2.92) reduces to

k̃

k
=

N

π
sin−1

[
1
S

sin
(

πS

N

)]
(2.93)

For different S values, k̃/k versus N is plotted in Fig. 2.9. As shown, k̃/k is always

greater than unity. In other words, the numerical wave simulated by Yee’s algorithm always
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propagates slower than the speed of light in the continuous space. Also notice that, as N

increases, k̃/k approaches unity. That is, the discrepancy between the numerical and exact

wave number becomes smaller when a finer mesh resolution is used. When S is unity

(Courant stability limit), k̃ is always equal to k for all Ns. This is an ideal situation

where there is no dispersion error. The corresponding time-step ∆t = ∆z/c is sometimes

referred to as the “magic time-step” [1]. Unfortunately, even if the ”magic time-step” is

used, the dispersion only vanishes along certain directions due to the anisotropy for multi-

dimensional cases. The anisotropy of the dispersion can be demonstrated in 2D and 3D

dispersion analyses.

Following a similar procedure as for the 1D case, the two-dimensional dispersion rela-

tion can be obtained by substituting a monochromatic traveling-wave trial solution into the

2D Yee’s algorithms of (2.37)-(2.39) or (2.40)-(2.42) and combining the resultant equations.

Both the TEz and TM z cases lead to the same dispersion relation of

(
1

c∆t

)2

sin2

(
ω∆t

2

)
=

1
∆x2

sin2

(
k̃x∆x

2

)
+

1
∆y2

sin2

(
k̃y∆y

2

)
(2.94)

where

k̃x = k̃ cosφ, k̃y = k̃ sinφ

Notice that, in two dimensions, the dispersion relation is also a function of the propagation

angle φ. For the square mesh (∆x = ∆y = ∆s), the two-dimensional dispersion relation

can be rewritten as

1
S2

sin2

(
πS

N

)
= sin2

(
π cosφ

N

k̃

k

)
+ sin2

(
π sinφ

N

k̃

k

)
(2.95)

The two-dimensional dispersion relation in (2.95) is a transcendental function which has no

close form solution for k̃/k. However, since the derivative of the transcendental function is
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readily obtained, (2.95) can be numerically solved using the Newton-Raphson’s method [89].

The procedure is summarized below.

Letting x = k̃/k, a = π cosφ/N , b = π sinφ/N , and d = sin2(πS/N)/S2, (2.95) can be

rewritten as

f(x) = sin2(ax) + sin2(bx)− d2 = 0 (2.96)

The root x of (2.96) can be solved by performing the following iteration

xi+1 = xi − f(xi)
f ′(xi)

(2.97)

where f ′(x) is the derivative of f(x) which takes the form of

f ′(x) = a sin(2ax) + b sin(2bx) (2.98)

Performing the iteration of (2.97), k̃/k can be readily solved.

Setting S = 0.5, k̃/ks versus the propagation angle φ for various mesh resolutions N

is plotted in Fig. 2.10. Since the dispersion is 90◦ periodic, only the curves within the first

quadrant are plotted. It is evident that all the dispersion curves are anisotropic (functions

of propagation angles) which possess their maxima along the principal axes 0◦ and 90◦ and

the minima along the diagonal axes 45◦. Similar to the one-dimensional case, the dispersion

decreases as the mesh resolution N increases.

When the mesh resolution is fixed at N = 10, k̃/k versus the propagation angle φ

for various S are plotted in Fig. 2.11. As S approaches the 2D stability limit (1/
√

2),

the dispersion curve shifts down in parallel towards unity. In other words, all the curves

maintain the same shape for different S. When S = 1/
√

2, the dispersion eventually vanishes

along the diagonal axis φ = 45◦.
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Fig. 2.10. Two-dimensional dispersion of the Yee algorithm (S = 0.5).
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Fig. 2.11. Two-dimensional dispersion of the Yee algorithm (N = 10).
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The three-dimensional dispersion relation of Yee’s algorithm can be readily derived

and written as

(
1

c∆t

)2

sin2

(
ω∆t

2

)
=

1
∆x2

sin2

(
k̃x∆x

2

)
+

1
∆y2

sin2

(
k̃y∆y

2

)
+

1
∆z2

sin2

(
k̃z∆z

2

)
(2.99)

where

k̃x = k̃ cosφ sin θ, k̃y = k̃ sinφ sin θ, k̃z = k̃ cos θ,

For the cubic mesh (∆x = ∆y = ∆z = ∆s), (2.99) can be rewritten in the form of

1
S2

sin2

(
πS

N

)
=

sin2

(
π cosφ sin θ

N

k̃

k

)
+ sin2

(
π sinφ sin θ

N

k̃

k

)
+ sin2

(
π cos θ

N

k̃

k

)
(2.100)

For a fixed Courant number S = 0.4, k̃/k versus propagation angles (θ, φ) for N = 5

and N = 10 is plotted in Figs. 2.12 and 2.13, respectively. As N increases, the absolute

value and the anisotropy of the dispersion are significantly reduced.

For a fixed mesh resolution N = 10, k̃/ks versus propagation angles (θ, φ) for different

Courant numbers (S = 0.1 and S = 0.577) is plotted in Figs. 2.14 and 2.15, respectively.

It is evident that the shapes of the dispersion for different S are identical. As S approaches

the Courant limit (1/
√

3), the k̃/k distribution shifts down towards unity.
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Fig. 2.12. Three-dimensional dispersion of the Yee algorithm (S = 0.4, N = 5).
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Fig. 2.13. Three-dimensional dispersion of the Yee algorithm (S = 0.4, N = 10).
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Fig. 2.14. Three-dimensional dispersion of the Yee algorithm (S = 0.1, N = 10).
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Fig. 2.15. Three-dimensional dispersion of the Yee algorithm (S = 0.577, N = 10).
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2.5.2. The FDTD(2,4) Scheme

For conciseness, only the three-dimensional dispersion of FDTD(2,4) is discussed in

this section. The 3D dispersion relation for the FDTD(2,4) scheme can be written as

(
1

c∆t

)2

sin2

(
ω∆t

2

)
=

1
∆x2

[
9
8

sin

(
k̃x∆x

2

)
− 1

24
sin

(
3k̃x∆x

2

)]2

+
1

∆y2

[
9
8

sin

(
k̃y∆y

2

)
− 1

24
sin

(
3k̃y∆y

2

)]2

+
1

∆z2

[
9
8

sin

(
k̃z∆z

2

)
− 1

24
sin

(
3k̃z∆z

2

)]2

(2.101)

where

k̃x = k̃ cosφ sin θ, k̃y = k̃ sinφ sin θ, k̃z = k̃ cos θ,

For the cubic mesh (∆x = ∆y = ∆z = ∆s), (2.101) can be rewritten in the form of

1
S2

sin2

(
πS

N

)
=

[
9
8

sin

(
π cosφ sin θ

N

k̃

k

)
− 1

24
sin

(
3π cosφ sin θ

N

k̃

k

)]2

+

[
9
8

sin

(
π sinφ sin θ

N

k̃

k

)
− 1

24
sin

(
3π sinφ sin θ

N

k̃

k

)]2

+

[
9
8

sin

(
π cos θ

N

k̃

k

)
− 1

24
sin

(
3π cos θ

N

k̃

k

)]2

(2.102)

Notice that the two-dimensional dispersion relation can be readily obtained by forcing

θ = 90◦ in (2.101) or (2.102). The one-dimensional dispersion relation can be obtained by

forcing (θ = 90◦, φ = 0◦) in (2.101) or (2.102). The one-dimensional dispersions versus mesh

resolution N for different S are plotted in Fig. 2.16. As shown, all the curves approach

unity when N increases. However, the dispersion characteristic of the FDTD(2,4) scheme

is very different from that of the FDTD (2,2) scheme. There is an optimum S value (Sopt)

for each N where the dispersion is minimized to zero [66]. When S deviates from Sopt, the
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discrepancy between k̃ and k increases. Also notice that if S < Sopt, k̃ > k; if S > Sopt,

k̃ < k. The optimum S value can be found by forcing k̃ = k in the dispersion relation and

solving the resultant nonlinear equation. For the 1D FDTD(2,4), Sopt versus N is plotted in

Fig. 2.17. Notice that the expected fourth-order convergence is not observed in Fig. 2.16.

The convergence rate of the FDTD(2,4) is only second-order. This can be attributed to the

fact that the error generated by the time-domain discretization is still second order, which

deteriorates the accuracy of the entire scheme unless ∆t is sufficiently small.

Next, the 2D dispersion of the FDTD(2,4) scheme will be discussed. For S = 0.5, the

2D dispersion versus propagation angles for different N is plotted in Fig. 2.18. Different

from Yee’s algorithm, the maximum discrepancy occurs along 45◦, and the minima are along

the principal axes. As N increases, the absolute value of the dispersion and the anisotropy

decreases. For a fixed mesh resolution N = 10, the dispersion versus propagation angles for

different S is plotted in Fig. 2.19. Similar as the FDTD(2,2) case, the shapes of all curves

remain identical. When S deviates the optimum value, the dispersion curves shifts away

from unity.

To complete the discussion, the 3D dispersion plots of the standard FDTD(2,4) scheme

are also presented. Firstly, the Courant number is fixed to S = 0.4, k̃/k versus propagation

angles for N = 5 and N = 10 is plotted in Figs. 2.20 and 2.21, respectively. It is evident

that using a finer mesh resolution greatly reduces the anisotropy of the dispersion. Secondly,

when the mesh resolution is fixed to N = 10, k̃/k versus propagation angles for S = 0.49

and S = 0.15 is plotted in Figs. 2.22 and 2.23, respectively. As shown, the shapes of

dispersion are identical but they are shifted.
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Fig. 2.20. Three-dimensional dispersion of the FDTD(2,4) algorithm (N = 5).
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Fig. 2.21. Two-dimensional dispersion of the FDTD(2,4) algorithm (N = 10).
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Fig. 2.22. Three-dimensional dispersion of the FDTD(2,4) algorithm (S = 0.49).
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2.5.3. The FDTD(2,N) Schemes

The dispersion relation for any FDTD(2,N) scheme can be expressed as [86]

(
1

c∆t

)2

sin2

(
ω∆t

2

)
=

∑

ξ=x,y,z

1
∆ξ2





N/2∑

n=1

Cn sin

[
(2n− 1)k̃ξ∆ξ

2

]



2

(2.103)

The left-hand-side of (2.103) depicts the time-domain discretization error while the right-

hand-side describes the error generated by the space-domain discretization. For the stan-

dard FDTD(2,N) algorithms, three important arguments can be made:

• Both the space and time discretization errors contribute to the total dispersion of the

scheme. In order to achieve the highest possible accuracy, it is important to balance

the orders of accuracy of the time- and space-discretizations.

• The time-domain discretization errors are identical along any propagation direction

(isotropic). The effect of varying the Courant number is to shift the dispersion curve.

Depending on the schemes, there is an optimum S value that minimize the dispersion

for each mesh resolution.

• The errors generated by the space discretization are anisotropic. The use of a finer

mesh resolution decreases the anisotropy.

In order to achieve a high accuracy, ideally the time domain scheme needs to be at least

N -th order. However, for simplicity, a popular treatment is to use an FDTD(2,N) scheme

with a small time-step [33]. Moreover, the space domain scheme is more critical since it

controls both the absolute value and the anisotropy of the dispersion.

In summary, the derivation of the standard FDTD schemes are based on the Tay-

lor series expansion. The coefficients of the stencils are selected to minimize the leading
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truncation error. These coefficients might not be the optimal in terms of the dispersion

error. Alternative methods, with the ultimate goal of minimizing the dispersion error are

still highly desirable. Such methods include the nonstandard FDTD schemes which are con-

structed directly based on the dispersion analysis. In the following chapter, the fundamental

theory of the nonstandard FDTD schemes will be introduced.



CHAPTER 3

THE NONSTANDARD FINITE-DIFFERENCE METHODS

In Chapter 2, we introduced the fundamental theory of the Standard Finite-Difference

Methods (SFD), from the simplest Yee’s algorithm to the more complex Higher-Order

FDTD (HOFDTD). Using the Taylor series expansion, the coefficients for the SFD stencils

are derived by minimizing the leading truncation error. Usually, the advantage of the

HOFDTD becomes obvious only if the mesh resolution is refined. However, for electrically

large problems, a very coarse mesh resolution usually has to be used due to the tight budget

of the available computer memories. In addition, for the unbalanced schemes, such as the

FDTD(2,4) scheme, the gain of accuracy in the space domain could be deteriorated by the

large time-domain errors unless a sufficiently small time step is used. Consequently, it is

questionable whether or not the coefficients for the SFD stencils are optimal in terms of

dispersion. Instead of the pursuit of the higher-order, alternative methods with the ultimate

goal of low-dispersion are more practical. The Nonstandard Finite-Difference Methods

(NSFD) are such schemes that are constructed directly based upon the dispersion analysis.

The concept of the NSFD was first proposed by Mickens [37]. Then, Cole applied the NSFD

to solve the Maxwell’s equations [40], [41]. In this report, the NSFD methods refer, in its

broadest sense, to those schemes which are modified based upon the SFD schemes to further

reduce the dispersion. To distinguish with the SFD methods, an NSFD scheme using M -

and N -point stencils in the time and space domains will be designated as the (NS)MN

scheme. Notice, (M,N) no longer represents the order of accuracy.

In this chapter, the fundamentals of the NSFD method will be first reviewed for the

1D case. Then the performance of the basic 1D NS22 scheme and its direct extension, the
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NS24 scheme, will be discussed. For multi-dimensional cases, an improved NSFD method

(INS) will be presented. Furthermore, the concept of the NSFD will be generalized to

construct a more General NSFD method (GNS). Both the dispersion analysis and the nu-

merical simulations will be demonstrated. Afterwards, Gauss’s Law for the NSFD methods

will be examined. Finally, to reduce the errors generated at the material discontinuities,

two material interface conditions will be developed for the NSFD methods with extended

stencils.

3.1. The One-Dimensional NS22 Scheme

For clarity, the discussion of the NSFD methods starts with the one-dimensional NS22

scheme, which uses a two-point stencil in both the time and space domains.

3.1.1. Fundamental of the NS22 scheme

The standard way to approximate a partial derivative is to use the second-order central-

difference operator introduced in Chapter 2. For example, the space derivative with respect

to x can be written as

∂

∂x
fi ≈

fi+1/2 − fi−1/2

∆x
=

(
d̃2nd

x

∆x

)
fi (3.1)

where d̃2nd
x represents the numerator of the standard second-order central-difference. If

one substitutes the monochromatic wave-equation solution f0 = e−jk0x into d̃2nd
x , it turns

out [37], [40]

d̃2nd
x (e−jk0x) =

[
2
k0

sin
(

k0∆x

2

)]
· (−jk0e

−jk0x)

= sk2
x0 ·

[
∂

∂x
(e−jk0x)

]
(3.2)
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where

sk2
x0 =

2
k0

sin
(

k0∆x

2

)

Clearly, the result on the right hand side is the exact solution multiplied by a constant sk2
x0.

Dividing both sides of (3.2) by sk2
x0 yields

(
d̃2nd

x

sk2
x0

)
(e−jk0x) =

∂

∂x
(e−jk0x) (3.3)

That is, the new operator Dns22
x = [(d̃2nd

x )/(sk2
x0)] gives the exact solution at one single

frequency (k0) along the x axis. Based on this observation, the space-domain NS22 operators

are defined as

Dns22
ξ fξ =

fξ+1/2 − fξ−1/2

sk2
ξ0

, ξ = x, y, z (3.4)

where

sk2
ξ0 =

2
k0

sin
(

k0∆ξ

2

)

A similar procedure is followed to derive the time-domain NS22 operator which can be

expressed as

Dns22
t fn =

fn+1/2 − fn−1/2

sω2
0

(3.5)

where

sω2
0 =

2
ω0

sin
(

ω0∆t

2

)
(3.6)

Notice that sk2
ξ0 depends on k0 and ∆ξ(ξ = x, y, z); sω2

0 is determined by ω0 and ∆t. Thus,

the correction parameters sk2
ξ0 and sω2

0 can be considered, respectively, as the frequency-

optimized space and time increments. To apply the NS22 algorithm, one only needs to

replace the space and time steps (∆ξ, ∆t) in Yee’s algorithm by their frequency-optimized

counterparts sk2
0 and sω2

0, respectively.
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3.1.2. Dispersion Analysis

In this section, we will explore the basic properties of the 1D NS22 scheme by analyzing

its dispersion characteristics. Following a similar procedure introduced in Section 2.5, the

1D dispersion relation for the NS22 scheme can be derived and written as

sin2

(
k0∆z

2

)
sin2

(
ω∆t

2

)
= sin2

(
ω0∆t

2

)
sin2

(
k̃∆z

2

)
(3.7)

where ω0 is the design angular frequency and k0 is the corresponding exact wave number

at the design frequency. Equation (3.7) can be rewritten as

sin2

(
π

N0

)
sin2

(
πS

N

)
= sin2

(
πS

N0

)
sin2

(
π

N

k̃

k

)
(3.8)

where S = c∆z/∆t is the Courant number; N and N0 represent the mesh resolution at an

arbitrary and at a design frequency, respectively. Notice that when N = N0, the two terms

containing S in (3.7) cancel out, which imply zero dispersion (k̃/k = 1) at N = N0.

To better demonstrate the characteristic of the dispersion, the local dispersion error is

defined as

Eloc =

(
1− k̃

k

)
(3.9)

Fig. 3.1 illustrates the absolute values of the local dispersion errors, for a fixed design mesh

resolution N0 = 10 and various Courant numbers S. The local dispersion errors of Yee’s

algorithm are also plotted as references. The figure clearly shows that, for the NS22 scheme,

the dispersion error is extremely low at N = N0. However, compared to the errors generated

by Yee’s algorithm, this excellent low-dispersion performance only presents in the vicinity

of N0. If N is increased from N0 to infinity, the dispersion error of the NS22 scheme could

be even worse than that of Yee’s algorithm. Similar to the Yee algorithm, using a Courant
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Fig. 3.1. One-dimensional local dispersion error of the NS22 scheme (N0 = 10).

number which is as close as possible to the Courant limit helps reduce the overall dispersion

error of the NS22 scheme. Therefore, the NS22 scheme is a narrow-band algorithm in terms

of the dispersion, which is suitable for single-frequency simulations. The local dispersion

errors versus N for a fixed Courant number S = 0.5 and N0 = 10, 20 are plotted in Fig. 3.2.

It is evident that the dispersion null of the NS22 scheme can be readily shifted by choosing

different N0. As N0 approaches infinity, the NS22 curve asymptotically approaches the curve

of Yee’s algorithm. Notice that, for N < N0 (higher frequency region for a fixed space step),

the dispersion error of the 1D NS22 scheme is always smaller than that of the Yee algorithm.

Bearing in mind that the higher-frequency signals usually generate greater dispersion error.

This fact indicates that the NS22 scheme still can be used for the broad-band simulations

if one selects an appropriate N0.
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Fig. 3.2. One-dimensional local dispersion error of the NS22 scheme (S = 0.5).

3.1.3. Numerical Simulations

In this section, the characteristics of the 1D NS22 scheme will be demonstrated through

numerical simulations. As a first example, a continuous sinusoid wave with f0 = 2GHz is

generated at the center of an 1D free-space region. The 1D space is large enough so that

the traveling waves will never reach the domain boundaries within the duration of interest.

The space step and the Courant number are set to ∆z = 0.01 m (λ/15 at f0) and S = 0.5,

respectively. A snapshot is taken for the magnitude of the E field at t = 1000∆t. The

snapshots for both the Yee and the NS22 schemes are zoomed near 200∆z and plotted in

Fig. 3.3. It is evident that the solution predicted by the NS22 has an excellent agreement

with the analytical solution. However, the results provided by Yee’s algorithm exhibits a

phase lag of about 24◦. For a longer simulation time, this phase discrepancy is even greater
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Fig. 3.3. Propagation of the 1D sinusoid waves (∆z = 0.01m,S = 0.5).

due to the accumulation of the dispersion. However, if S = 1, the 1D Yee’s algorithm and

NS22 scheme both produce the exact solution.

A second simulation is a half-wavelength dielectric slab (εr = 16) in a free-space region

[37]. The space step and the Courant number are set to ∆z = 0.0025m and S = 0.99 in

terms of the speed of light in free-space region, respectively. The incident wave is a sequence

of a sinusoid wave with f0 = 3GHz, as shown in the first subplot of Fig. 3.4. Ideally, there is

no reflection if the sequence is infinitely long. An average permittivity is applied along the

material interface. Notice that there is almost no dispersion in the free-space region since S

is very close to the “magic time step” S = 1. The errors are dominated by the phase error

inside the slab and the nonphysical errors generated by the material discontinuities. The

reflected and the transmitted E fields at t = 1100∆t, predicted by the Yee and the NS22
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schemes, are plotted in the second and third subplots of Fig. 3.4. As shown, large reflections

are observed at both ends of the reflected sequence due to the signal discontinuities there.

As shown, the results predicted by Yee’s algorithm exhibit large reflection along the center

part of the reflected wave. This can be attributed by the dispersion of Yee’s algorithm which

makes the thickness of the slab no longer half wavelength. However, the NS22 scheme has

the freedom to choose the sk value inside the material which automatically adjust the

phase speed. It is evident, the results predicted by the NS22 scheme present much smaller

reflections. Based on the above observations, NSFD algorithm is suitable for problems

which require accurate phase cancelation at a single operating frequency.

Both of the previous examples are single-frequency simulations. However, whether the

NSFD algorithm is capable of simulating broad-band signals remains a question. To explore

the broad-band performance of the NSFD algorithm, a Gaussian pulse with (α = 30, β = 10)

is generated in the 1D free-space region. The space step and the Courant number are set

to ∆z = 0.01m and S = 0.5, respectively. The frequency spectrum of the Gaussian pulse

is plotted in Fig. 3.5. As shown, the Gaussian pulse contains significant low-frequency

components. The -3dB frequency of the Gaussian pulse is located at about f3dB = 1.6

GHz. For the NS22 scheme, the design frequency is set to f3dB. The snapshots of the E

field at t = 500∆t for the Yee and the NS22 schemes are plotted in Fig. 3.6. As shown, the

pulses predicted by the Yee and NS22 schemes suffer from similar level of phase errors. This

example suggests that, by properly choosing a design mesh resolution, the NSFD algorithm

may generate dispersion errors no worse than Yee’s algorithm.
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3.2. The One-Dimensional NS24 Scheme

The basic concept of the NS22 scheme can be readily extended to Fang’s FDTD (2,4)

algorithm [15] to construct a NS24 scheme [90], [91]. Following a similar procedure, the

space-domain NS24 operator can be defined as

Dns24
ξ fξ =

27
24(fξ+1/2 − fξ−1/2)− 1

24(fξ+3/2 − fξ−3/2)
sk4

ξ0

, ξ = x, y, z (3.10)

where

sk4
ξ0 =

2
k0

sin
[
27
24

sin
(

k0∆ξ

2

)
− 1

24
sin

(
3k0∆ξ

2

)]
(3.11)

Similar to the NS22 case, sk4
ξ0 can be considered as the frequency-optimized space step.

Since the same second-order stencil is used in the time domain, the time-domain NS24

operator remains the same as in (3.5). To apply the NS24 algorithm, one needs to replace

the space and time steps (∆ξ, ∆t) in the regular FDTD (2,4) algorithm by their frequency-

optimized counterparts sk4
0 and sω2

0, respectively.

The dispersion relation of the 1D NS24 scheme can be readily derived and expressed

as

[
9
8

sin
(

k0∆z

2

)
− 1

24
sin

(
3k0∆z

2

)]2

sin2

(
ω∆t

2

)

= sin2

(
ω0∆t

2

) [
9
8

sin

(
k̃∆z

2

)
− 1

24
sin

(
3k̃∆z

2

)]2

(3.12)

Comparing to the dispersion relation of the 1D NS22 scheme in (3.7), the only difference

is the first term on the left hand side. Similarly, the dispersion relation of (3.12) can be
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rewritten as

[
9
8

sin
(

π

N0

)
− 1

24
sin

(
3π

N0

)]2

sin2

(
πS

N

)

= sin2

(
πS

N0

)[
9
8

sin

(
π

N

k̃

k

)
− 1

24
sin

(
3π

N

k̃

k

)]2

(3.13)

It can be expected that the dispersion error curve of the NS24 scheme will present a null

which is located at N = N0. It has been indicated in Section 2.5 that, for the FDTD(2,4)

scheme, there could be a second null which is controlled by the Courant number S. To

control the position of the two nulls of the NS24 scheme, we can specify two design mesh

resolutions N0 and N1. The desired S value can be found as follows. Firstly, k̃/k is forced

to unity in (3.13). Then substituting N = N1 into (3.13) yields

[
9
8

sin
(

π

N0

)
− 1

24
sin

(
3π

N0

)]2

sin2

(
πS

N1

)

=
[
9
8

sin
(

π

N1

)
− 1

24
sin

(
3π

N1

)]2

sin2

(
πS

N0

)
(3.14)

Solving (3.14) using the Newton-Ralphson method, the desired S value can be readily

obtained. Notice that, due to the symmetry of the equation, switching N0 and N1 in (3.14)

will not affect the result. The computed S values for various (N0 and N1) combinations are

summarized in Table 3.1.

Table 3.1. Computed S values for various N0 and N1

N0 N1 S

Case 1 17.5 17.5 0.1693
Case 2 15 20 0.1745
Case 3 25 10 0.2243

The local dispersion errors of each of the Case in Table 3.1 are plotted in Figs. 3.7 - 3.9,

respectively. It is evident that the dispersion nulls are located precisely at the design mesh
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Fig. 3.7. One-dimensional local dispersion error of the NS24 scheme (N0 = 17.5, S =
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Fig. 3.9. One-dimensional local dispersion error of the NS24 scheme (N0 = 25, S = 0.2243).

resolutions (N0 and N1). By choosing different combinations of N0 and N1, it is possible

to control the low-dispersion band width for the 1D NS24 scheme.

3.3. The Anisotropy for the Multi-Dimensional NSFD schemes

The NSFD algorithms discussed so far are limited to the one-dimensional domain.

For the multi-dimensional cases, the ideal performance of the 1D NSFD schemes could be

totally deteriorated by another nonphysical artifact: the anisotropy. To best demonstrate

this issue, we start the discussion with the dispersion analysis for the multi-dimensional

NS22 scheme.

The multi-dimensional NSFD schemes are constructed by simply replacing the time

and space increments (∆t and ∆ξ) by their nonstandard counterparts. Following a similar
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procedure, the dispersion relations of the multi-dimensional NSFD schemes can be readily

obtained. The general 3D dispersion relation of the NS22 scheme can be expressed as

1
sin2 (ω0∆t/2)

sin2

(
ω∆t

2

)
=

∑

ξ=x,y,z

1
sin2 (k0∆ξ/2)

sin2

(
k̃ξ∆ξ

2

)
(3.15)

where

k̃x = k̃ cosφ sin θ, k̃y = k̃ sinφ sin θ, k̃z = k̃ cos θ.

For the cubic mesh case (∆x = ∆y = ∆z = ∆s), this relation reduces to

1
sin2 (πS/N0)

sin2

(
πS

N

)
=

1
sin2 (π/N0)

∑

ξ=x,y,z

sin2

(
π

N

k̃ξ

k

)
(3.16)

where k̃/k is the ratio of the numerical wave number to the exact wave number; N0 = λ0/∆s

is the design mesh resolution. The 2D dispersion relations can be readily obtained by forcing

φ = 0◦ in (3.16). Clearly, the dispersion error for the multi-dimensional NSFD schemes is

also a function of φ.

The 2D local dispersion errors versus the φ for the 2D Yee and NS22 schemes are

plotted in Fig. 3.10. Only the first quarter is plotted since all the curves are 90◦ periodic.

Although, the NS22 scheme exhibits zero dispersion along the principle axes (0◦ and 90◦),

it still suffers from a similar level of anisotropy as does the Yee algorithm.

3.4. The Improved NSFD Schemes

In order to reduce the average dispersion error, a family of methods [1], [53]– [55], [60]

was constructed based on shifting the symmetrical center of the dispersion error curve to

zero at a design mesh resolution. Using a similar approach, an improved NSFD method

(INS) [91] is presented in this section. By introducing extra degrees of freedom into the
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Fig. 3.10. Two-dimensional local dispersion error of the NS22 scheme (N = N0 = 10, S =
0.7).

spatial operators of the regular NSFD methods (the NS22 and INS24 schemes), the INS22

and INS24 methods are able to mitigate the average dispersion error.

3.4.1. The INS22 and INS24 Schemes

Since the derivation of the regular NSFD schemes only considers the plane-wave prop-

agating along the principle axes, sk2
ξ0 and sk4

ξ0 may not be the optimal space steps for waves

traveling in other directions. To achieve the optimal correction parameters in the global

sense, one can introduce extra degrees of freedom into (3.4) and define the space-domain
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INS22 operators as

Dins22
x fx =

fx+1/2 − fx−1/2

a · sk2
x0

(3.17)

Dins22
y fy =

fy+1/2 − fy−1/2

b · sk2
y0

(3.18)

Dins22
z fz =

fz+1/2 − fz−1/2

c · sk2
z0

(3.19)

where a, b, and c are extra free parameters. For simplicity, we only consider the cubic mesh

where ∆x = ∆y = ∆z = ∆s. In that case, the free parameters are identical (a = b = c = 1).

Thus the space domain INS22 operators in (3.17) - (3.19) reduce to

Dins22
ξ fξ =

fξ+1/2 − fξ−1/2

q · sk2
ξ0

, ξ = x, y, z (3.20)

Following a similar procedure, the space-domain INS24 operators can be expressed as

Dins24
ξ fξ =

9
8

(
fξ+1/2 − fξ−1/2

)− 1
24

(
fξ+3/2 − fξ−3/2

)

q · sk4
ξ0

, ξ = x, y, z (3.21)

Notice that the regular NSFD schemes are special cases of the improved NSFD schemes

when the free parameter q = 1. The values of q can be determined based on the dispersion

analysis that follows.

3.4.2. Dispersion Analysis for INS22

The two-dimensional dispersion relation of the INS22 scheme can be found by substi-

tuting a harmonic solution to the 2D INS22 update equations. Following a similar notation

as in [67], the 2D INS22 dispersion relation can be written as

sin2(π/N0)
sin2(πS/N0)

sin2

(
πS

N

)
=

1
q2

[
sin2

(
π cosφ

N

k̃

k

)
+ sin2

(
π sinφ

N

k̃

k

)]
(3.22)



67

where k̃ is the numerical wave number, k is the exact wave number, N represents the actual

cell numbers per wavelength, N0 represents the cell numbers per wavelength at the design

frequency, and S = (c∆t)/∆s is the Courant number.

Ideally at the design mesh resolution N0, we desire the dispersion error to be equal to

zero for all propagation angles. That is, in (3.22), k̃ should be equal to k for all angles in

the range of φ = 0◦ ∼ 90◦ (note that the dispersion curve is 90◦ periodic) at N = N0. For

a finite number of angles (I), this leads to an overdetermined linear system (the number

of the equations is greater than the number of the unknowns). Assuming the angles are

uniformly sampled with ∆φ = π/[2(I − 1)], the resultant I equations can be expressed as

Fi(q) = q2 − ai

b
= 0, i = 1, 2, · · · , I (3.23)

ai = sin2

[
π

N0
cos(φi)

]
+ sin2

[
π

N0
sin(φi)

]

b = sin2

(
π

N0

)

where φi = (i− 1)∆φ. Notice that there is no exact solution for (3.23).

To solve (3.23), the square error is defined as [92]

‖F (q)‖2 =
I∑

i=1

[Fi(q)]
2 =

I∑

i=1

(
q2 − ai

b

)2
(3.24)

The least squares approximation to the solution can be found by minimizing (3.24), which is

equivalent to forcing the derivative of (3.24) with respect to q to zero. This can be expressed

as

∂‖F (q)‖2

∂q
=

I∑

i=1

4q
(
q2 − ai

b

)
= 4q

(
Iq2 − 1

b

I∑

i=1

ai

)
= 0 (3.25)

Solving (3.25), q is obtained by

q =
1√
Ib

√√√√
I∑

i=1

ai (3.26)
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Fig. 3.11. Errors of q for the 2D INS22 scheme.

Notice that when N = N0, the two terms containing S in the left-hand-side of (3.22) cancel

out which makes q independent of ∆t.

A remaining question is how many angles we need to calculate q? Using the q value

with large I (I = 90, 001) as a reference, the errors of q versus different I are plotted in Fig.

3.11. As shown, the error of q decreases as I or N0 increases. For N0 = 10, to achieve an

error for q smaller than 10−5, I must be larger than 400 (I > 400).

The local dispersion errors of the three (2,2) algorithms are plotted in Fig. 3.12. Only

the curves between 0◦ and 90◦ are plotted because all the curves are 90◦ periodic. As shown,

the average dispersion error of NS22 is smaller than that of Yee’s algorithm. Also, the 2D

NS22 scheme has zero dispersion along 0◦ and 90◦. For the 2D INS22 scheme, the dispersion

vanishes at 22.5◦ and 67.5◦ due to the symmetry. The effect of the free parameter q in the

INS22 scheme is to shift the average error down to zero. However, the maximum phase
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Fig. 3.12. Two-dimensional local dispersion errors of the (2,2) schemes [S = 0.6, N = N0 =
10, q(I = 401) = 1.00414816].

errors (peak-to-peak) of the above three schemes are the same.

Similar to [1], [53]– [55], [60], forcing k̃ = k at N = N0 along a zero dispersion angle

(φ0) in (3.22) leads to

q =

√
sin2(π cosφ0/N0) + sin2(π sinφ0/N0)

sin(π/N0)
(3.27)

The parameter q in (3.27) is ∆t independent. In other words, q does not need to be re-

calculated if the time step is changed. The reason we still use the least squares solution

is that, for the 3D case, the zero dispersion angle is not obvious and may still have to be

numerically calculated. Substituting φ0 = 22.5◦ into (3.27), the difference of q between the

analytical solution (3.27) and the reference solution (3.26) with large I [|q(analytical) −

q(reference)|] is plotted in Fig. 3.13. As shown, for practical mesh resolution, the reference

solution obtained using the least squares method is a good approximation to the analytical
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solution.

Now, let us re-examine the least squares solution of (3.26). Substituting ai and b into

(3.26) yields

q =
1√
Ib

√√√√
I∑

i=1

ai =

√
1
I

∑I
i=1

[
sin2(π cosφi/N0) + sin2(π sinφi/N0)

]

sin(π/N0)
(3.28)

which reveals the similarity between the least squares solution and the analytical solution of

(3.27). As I approaches infinity, the term under the square root in (3.28) can be rewritten

as

lim
I→∞

1
I

I∑

i=1

a(φi) = lim
I→∞

2
π

I∑

i=1

a(φi)
π

2I
=

2
π

∫ π/2

0
a(φ)dφ (3.29)

which is the average of a(φ) for φ ∈ [0, π/2]. For a continuous function a(φ), using the

integral mean value theorem, we obtain

2
π

∫ π/2

0
a(φ)dφ =

2
π

a(φ0)
∫ π/2

0
dφ = a(φ0) (3.30)

for a constant φ0 ∈ [0, 2π], which agrees with the formulation in (3.27). This suggests that

the zero dispersion angle φ0 can be found by solving

a(φ0) =
2
π

∫ π/2

0
a(φ)dφ (3.31)

The integral in (3.31) still needs to be evaluated numerically.

Besides the local dispersion error defined in (3.9), the 2D global dispersion error is

defined as

E2D
glb =

∫ 2π

0

∣∣∣∣∣1−
k̃

k

∣∣∣∣∣ dφ (3.32)

In Fig. 3.14, we plot the global dispersion error when the design mesh resolution of NS22

and INS22 is set to 10. As shown, near the design mesh resolution, the INS22 scheme
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Fig. 3.13. Difference of q between the analytical and reference solutions.

exhibits an improved average dispersion distribution compared to the other two schemes.

However, the low-dispersion performance of the NSFD methods is still relatively narrow

band.

3.4.3. Dispersion Analysis for INS24

The optimal q values for the INS24 scheme can be derived following a very similar

procedure summarized in the previous section. In this section, the 3D INS24 scheme will

be considered as an example. The derivation starts with the dispersion relation of the 3D
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INS24 scheme which can be written as

[27
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24 sin(3π/N0)]2
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=
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 (3.33)

Similar to the 2D case, forcing k̃ = k at N = N0 at I angles along φ(0◦ ∼ 90◦) and J angles

along θ(0◦ ∼ 90◦) (note that the dispersion error for the INS24 scheme is 90◦ periodic with

respect to φ and θ) leads to an overdetermined linear system

Fp(q) = q2 − ap

b
= 0, p = 1, 2, · · · I × J (3.34)



73

10
0

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

I (J=I)

E
rr

or
 o

f q
 (

3D
 IN

S
24

)

N
0
=10

N
0
=20

N
0
=30

Fig. 3.15. Errors of q for the 3D INS24 scheme.

where

ap =
[
9
8

sin
(

π cosφi sin θj
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)
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+
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i = 1 ∼ I, j = 1 ∼ J

b =
[
9
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(

π

N0

)
− 1

24
sin

(
3π

N0

)]2

Then, the q value for the 3D INS24 can be solved following a similar procedure summarized

in (3.24)-(3.26). The reference solution is found by using I = J = 2, 881. The errors of q

versus different I are plotted in Fig. 3.15. As shown, the error of q decreases when I or N0

increases. Using I = J > 400, the error of q is smaller than 10−6 for N0 = 10.

The correction parameter q can also be found by forcing k̃ = k at N = N0 along zero



74

dispersion direction (φ0, θ0) of the INS24 scheme. This leads to

q =
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π
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24
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(3.35)

However, the exact values of φ0 and θ0 are not obvious. In fact, there are multiple solutions

for the zero dispersion direction. For convenience, we only need to find φ0 and θ0 along

the principal axes, for example, forcing θ0 = 0◦ in (3.35) and solving for φ0, or vice versa.

Assuming θ0 = 0◦ and substituting the reference q value with I = J = 2, 881 into (3.35),

φ0 is solved and plotted in Fig. 3.16. As shown, φ0 converges to 27.07◦ as I increases.

Using the definition in (3.9), the local dispersion errors of Fang’s algorithm and the

NS24, INS24 schemes for N0 = 10 and S = 0.49 are plotted in Figs. 3.17 and 3.18; q is

calculated using I = J = 401. Only the dispersion in the first octant is plotted due to the

rotational symmetry of the curves. As shown, both NSFD schemes exhibit lower dispersion

error than Fang’s algorithm. The average error of the INS24 scheme is shifted down to

zero compared to the NS24 scheme. The maximum phase differences (peak-to-peak) are

the same for all three methods.

The three-dimensional global dispersion error can be defined as

E3D
glb =

∫ 2π

0

∫ π

0

∣∣∣∣∣1−
k̃

k

∣∣∣∣∣ sin θdθdφ (3.36)

The global dispersion errors of Fang’s, NS24, and INS24 are plotted in Fig. 3.19. Notice

that the INS24 scheme exhibits the lowest average dispersion error near the design mesh
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Fig. 3.16. Zero-dispersion angle for the 3D INS24 scheme (θ0 = 0◦, S = 0.49, N = N0 =
10, q(I = J = 2, 881) = 1.00034998).

resolution. Moreover, both NSFD methods are relative narrow band.

3.4.4. Numerical Simulations

In this section, a variety of numerical simulations will be performed to justify the

formulations of the improved nonstandard finite-difference. All the q values are computed

using the least squares solution. All the open problems (radiation and scattering) are

truncated with an 8-layer PML.

In the first simulation, a single-frequency TM z polarized plane wave is normally inci-

dent upon a two-dimensional dielectric square cylinder. The cylinder has a side width of

d = 2λ0 (where λ0 is the free-space wavelength) and a relative permittivity εr = 4. An

arithmetic average permittivity (εr = 2.5) is assigned along the free-space-material inter-

face. The sk and q values are different for different materials. For example, for N0 = 20,
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it can be solved q1 = 1.00102838, q2 = 1.00414816, and q3 = 1.00258172 for the mesh reso-

lution in the free space, the dielectric material and the interface, respectively. The bistatic

RCS using N0 = 20 (in free space) is computed by Yee’s, NS22, and INS22 schemes and is

plotted in Fig. 3.21. The reference solution is provided by Yee’s algorithm with N0 = 160

(in free space).

A good agreement between all four solutions is visually indicated except for the angles

close to 180◦. To compare the performance of the three algorithms, the following L2 error

is defined and used.

L2 =

√∑M
i=1(A

sim
i −Aref

i )2

M
(3.37)

where Asim and Aref are the simulated and the reference amplitudes of the linearized RCS,

respectively; M represents the number of the observation angles. The L2 errors of the three
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Fig. 3.20. Geometry of the dielectric square cylinder (d = 2λ0).
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Fig. 3.22. The L2 error of the linearized RCS of the dielectric square cylinder versus the
free-space mesh resolution (M = 361).

algorithms using different design mesh resolutions (N0 = 10, 20, and 40 in free space) are

plotted in Fig. 3.22. As shown, the INS22 scheme has the lowest L2 error. However, as

the design mesh resolution increases, the performance of the INS22 approaches that of the

NS22.

For the second simulation, a TEx polarized plane-wave is incident and scattered by a

three-dimensional PEC square plate [2]. The plate has a side width d = 5λ0 . The design

mesh resolution is selected to be N0 = 6. The reference solution is predicted by Yee’s

algorithm with N0 = 40; q is calculated to be 1.01556617. The yz-plane bistatic RCS of

the plate for incident angles θi = 0◦ and θi = 30◦ is computed by Yee’s, NS22, and INS22

schemes and plotted in Figs. 3.24 and 3.25.

A good agreement between all four solutions is indicated visually. The L2 errors
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Fig. 3.23. Geometry of the PEC square plate (d = 5λ0).

Table 3.2. L2 Error (S = 0.55,∆s = λ0/6,M = 361)

Scheme L2 Error (θi = 0◦) L2 Error (θi = 30◦)
Yee 24.6727 14.6364

NS22 23.3063 10.5742
INS22 24.1345 6.0993
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Fig. 3.26. Geometry of the PEC square cavity.

calculated using 3.37 are summarized in Table 3.2. For θi = 0◦ case, the NS22 scheme

has the lowest error because the major energy in the scattering pattern is along θ = 0◦

where NS22, according to Fig. 3.12, has the lowest dispersion. However, for the θi = 30◦

case, the INS22 scheme has the lowest error since the major energy of the pattern is directed

along the specular angle of θ = 30◦ where the INS22, according to Fig. 3.12, has the lowest

dispersion error.

The first example using the higher-order (2,4) schemes simulates the mode field struc-

tures and resonant frequencies of a two-dimensional PEC square cavity (TEz). The cavity

has a side width d = 1 m. Fang’s, NS24 and INS24 schemes with ∆s = 1 m are used for

comparison. For the extended stencil, image theory is used to model the PEC boundaries

of the cavity [61]. The cavity is excited by a Gaussian pulse with significant energy within

0-0.5GHz. After updating 96,000 time steps, the time history of the Hz field at an obser-

vation point is Fourier transformed to the frequency domain. The absolute errors of the

resonant frequencies are plotted in Figs. 3.27 and 3.28.
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Fig. 3.27. Absolute error of the resonant frequencies of the two-dimensional PEC square
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In Fig. 3.27, the design frequency is set to be 0.3GHz which is the resonant frequency

of the TE20 mode; q for this case is solved to be 1.00026584. As shown, the NS24 scheme

predicts nearly the exact solution. The error of the INS24 scheme is higher than that of

the NS24 scheme, but still much lower than that of Fang’s algorithm. The explanation is

that, for the TE20 mode, the wave vector is directed along the x axis where, according to

Fig. 3.18, the NS24 scheme has no dispersion and the INS24 scheme has medium dispersion

error compared to Fang’s and NS24 algorithms. In Fig. 3.28, the design frequency is set

to be 0.335GHz which is the resonant frequency of the TE21 mode; q is determined to be

1.00041064. In this case the INS24 scheme has the lowest error because the wave vector is

directed along 26.6◦ where, according to Fig. Fig. 3.18, the INS24 scheme has the lowest

dispersion error.

The last simulation is a two-dimensional four-element array. The geometry of the array

is shown in Fig. 3.29. The array is excited by four single-frequency soft sources (Ez) which

are uniform in amplitude and in phase. Fang’s, NS24 and INS24 algorithms with N0 = 6

are used to compute the array factor. Using (3.26), q is found to be 1.00196039. In Fig.

3.30, the array factor power patterns versus observation angles are plotted (note the 90◦

pattern is periodic). The errors calculated using (3.37) are summarized in Table 3.3. It is

evident that, the INS24 produces the most accurate result based on the observation of the

pattern or the comparison of the L2 error.

Table 3.3. L2 Error (S = 0.5,∆s = λ0/6,M = 361)

Scheme L2 Error
Fang 0.07786753
NS24 0.03835138
INS24 0.02539144
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Fig. 3.29. Geometry of the four-element array (d = 5.5λ0).
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Fig. 3.30. The xy-plane array factor power pattern of the four-element array (∆s =
λ0/6,S = 0.5,M = 361).
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In this section, we present an improved NSFD algorithm by introducing an extra

degree of freedom into the frequency-optimized space step of the regular NSFD. The INS22

algorithm exhibits lower dispersion error than the regular NS22 and Yee’s algorithms near

the design mesh resolution. However, this low-dispersion performance is narrow band.

The correction parameter q of INS22 is independent of the time-step which avoids the

recalculation when the time step changes. The computation of the parameters for the regular

NSFD, skξ0 and sω0, is simple. To apply the INS22 algorithm, only slight modifications are

needed to Yee’s algorithm. The increases of the CPU time and memory consumption are

very minimal. The INS24 scheme shares the above properties of the INS22 scheme.

Clearly, the INS schemes mitigate the average dispersion error for the multi-dimensional

simulations. However, the INS schemes may not be suitable to simulate broad-band signals

since the low-dispersion areas are limited in the vicinity of the the design frequency.

3.5. The Generalized NSFD Schemes

To resolve some of the previously stated issues, the concept of the INS schemes can be

generalized by introducing more degrees of freedom into the space stencils. In the rest of

the report, these schemes are referred to as Generalized NSFD (GNS) schemes [93]. The

GNS24 scheme will be used as an example to demonstrate the analytical procedure.

3.5.1. The GNS24 Scheme

It has been reported that the dispersion error of Fang’s FDTD(2,4) algorithm can be

drastically reduced by properly adjusting the coefficients of the space stencil [58] - [65].
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However, in the aforementioned literature, the procedure to determine the optimal coeffi-

cients becomes cumbersome for complex stencils. A more straightforward approach is to

use the least squares method introduced in the previous sections. Now the GNS24 scheme

will be presented by considering a 2D domain with the square mesh (∆x = ∆y = ∆s). The

extension to three dimension is straightforward.

As stated in Chapter 2, the fourth-order of accuracy will not be achieved for the entire

FDTD(2,4) algorithm due to the second-order error in the time domain. Thus, for this case,

a space stencil with fourth-order accuracy may not be necessary. In other words, a space

stencil with second-order accuracy is sufficient. This allows additional degrees of freedom

in choosing the coefficients of the space stencil.

In the 2D Cartesian coordinate, the space stencils for the GNS24 scheme can be ex-

pressed as [60]

dξ(fξ) =
C1(fξ+1/2 − fξ−1/2) + C2(fξ+3/2 − fξ−3/2)

∆s
, ξ = x, y (3.38)

where C1 and C2 are free parameters whose values will be determined based upon the

dispersion analysis. If C1 = 9/8 and C2 = −1/24, (3.38) reduces to the regular fourth-order

stencil.

From Taylor series expansion, it can be shown that the constraint for C1 and C2 to

guarantee second-order accuracy is [60], [93]

C1 + 3C2 = 1 or C1 = 1− 3C2 (3.39)

This condition allows one independent free parameter which can be utilized to reduce the

numerical dispersion. A more relaxed constraint would be [93]

C1 + 3C2 = p or C1 = p− 3C2 (3.40)
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where p is an extra free parameter. This condition makes the stencil in (3.38) nearly second-

order accurate (it can be verified that p is very close to unity) but provides two independent

free parameters to further reduce the dispersion. For convenience, the schemes governed by

(3.39) and (3.40) are referred to as the GNS24-1 and GNS24-2 schemes, respectively. The

values of the free parameters C1 and C2 can be determined following a similar procedure

demonstrated in Section 3.4.3.

First, the dispersion relation of the GNS24 schemes can be derived and written as

1
S2

sin2

(
πS

N

)
=

[
C1 sin

(
π cosφ

N

k̃

k

)
+ C2 sin

(
3π cosφ

N

k̃

k

)]2

+

[
C1 sin

(
π sinφ

N

k̃

k

)
+ C2 sin

(
3π sinφ

N

k̃

k

)]2

(3.41)

where S is the Courant number, N is the number of cells per wavelength, and k̃/k is the

ratio of the numerical wave number to the exact wave number. Since (3.39) is a special case

of (3.40), we only present (3.40) as an example.

Second, forcing k̃/k = 1 at N = N0 along φi = 0◦ ∼ 90◦, i = 1 ∼ I in (3.41) leads to

an overdetermined nonlinear system which can be expressed as

Fi(C1, C2) = (aiC1 + biC2)2 + (ciC1 + diC2)2 − e = 0, i = 1, 2, · · · , I (3.42)

where

ai = sin
(

π cosφi

N0

)
, bi = sin

(
3π cosφi

N0

)

ci = sin
(

π sinφi

N0

)
, di = sin

(
3π sinφi

N0

)

e =
1
S2

sin2

(
πS

N0

)

Equation (3.42) can be rewritten as

Fi(C1, C2) = fiC
2
1 + giC

2 + hiC1C2 − e = 0, i = 1, 2, · · · , I (3.43)



89

where

fi = a2
i + c2

i

gi = b2
i + d2

i

hi = 2(aibi + cidi)

The least squares solution can be found by minimizing the square error defined as

follows [92]

‖F (q)‖2 =
I∑

i=1

[Fi(q)]
2 =

I∑

i=1

(
fiC

2
1 + giC

2
2 + hiC1C2 − e

)2 (3.44)

This can be achieved by solving the following equations

G(C1, C2) =




G1(C1, C2)

G2(C1, C2)


 =




∂‖F (q)‖2
∂C1

∂‖F (q)‖2
∂C2


 = 0 (3.45)

Since (3.45) is still a nonlinear equation, Newton’s method will be used to solve for C1 and

C2. Assuming C = [C1, C2]′ and J is the Jacobian of G, the procedure is summarized as

follows

Cn+1 = Cn + ∆Cn (3.46)

where

∆Cn = −J−1Gn (3.47)

In (3.47), J can be expressed in explicit form as

J =




∂G1
∂C1

∂G1
∂C2

∂G2
∂C1

∂G2
∂C2


 =




∂2‖F (q)‖2
∂C1

2
∂2‖F (q)‖2

∂C1C2

∂2‖F (q)‖2
∂C1C2

∂2‖F (q)‖2
∂C2

2
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where

∂2‖F (q)‖2

∂C1
2 = 2

I∑

i=1

[(
∂Fi

∂C1

)2

+ Fi
∂2Fi

∂C1
2

]

∂2‖F (q)‖2

∂C1∂C2
= 2

I∑

i=1

[
∂Fi

∂C1

∂Fi

∂C2
+ Fi

∂2Fi

∂C1C2

]

∂2‖F (q)‖2

∂C2
2 = 2

I∑

i=1

[(
∂Fi

∂C2

)2

+ Fi
∂2Fi

∂C2
2

]

Notice that a good set of initial values for the iteration is C0 = [9/8,−1/24]′, i.e., the

coefficients of the regular fourth-order stencil. The coefficients for the GNS24-1 scheme can

be solved similarly.

Using the coefficients with large I (I = 90, 001) as reference, the error of the coefficients

for the GNS24-1 and GNS24-2 schemes are plotted in Figs. 3.31 and 3.32, respectively.

To guarantee the errors to be smaller than 10−5, I = 401 will be used to calculate the

coefficients.

As an example, the coefficients for N0 = 10 and N0 = 20 are computed and summarized

in Table 3.4.

Table 3.4. Computed coefficients for the GNS24 schemes (S = 0.5)

N0 = 10 N0 = 20

GNS24-1 C1 = 1.08867882
C2 = −0.02955961

C1 = 1.08630375
C2 = −0.02876792

GNS24-2 C1 = 1.12864752
C2 = −0.04437762

C1 = 1.12592203
C2 = −0.04232427

Using these coefficients, the local dispersion error defined in (3.9) for each of the GNS24-1

and GNS24-2 schemes is plotted in Fig. 3.33. As shown, the GNS24-1 scheme exhibits lower
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Fig. 3.33. Local dispersion error of the GNS24 schemes (N = N0 = 10, S = 0.5).

average dispersion error than the FDTD(2,4) scheme, while the maximum phase error (peak-

to-peak) is greater. However, the GNS24-2 scheme presents no visible dispersion errors.

The global dispersion errors defined in (3.32), for N0 = 10 and N0 = 20, are plotted

in Figs. 3.34 and 3.35, respectively. It is evident that the GNS24-1 scheme generates

smaller global errors for all the mesh resolutions. In other words, the GNS24-2 is a broad-

band scheme in terms of dispersion error. However, compared to the INS24 scheme, the

GNS24-2 scheme is a narrow-band scheme whose dispersion error is negligible at N = N0.

The dispersion-error null of the GNS24-2 scheme is precisely controlled by the design mesh

resolution N0.
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Fig. 3.34. Local dispersion error of the GNS24 schemes (N0 = 10, S = 0.5).
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Fig. 3.35. Local dispersion error of the GNS24 schemes (N0 = 20, S = 0.5).
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3.5.2. Absorbing Boundary Condition

To perform the simulations in an open region, appropriate absorbing boundary con-

ditions (ABCs) must be applied to truncate the FDTD domain. One of the most popular

ABCs is the Perfectly Matched Layer (PML) proposed by Berenger [8] - [9]. In this sec-

tion, the effectiveness of Berenger’s PML for the GNS24 scheme will be verified following a

procedure presented in [94], [95].

A two-dimensional TEz FDTD test domain ΩT is truncated by Berenger’s PML with

various number of layers. A uniform square mesh with ∆x = ∆y = 0.015m is used. There

are 100 cells in the x direction, and 50 cells in the y direction. The Courant number

is set to S = 0.5. A benchmark domain ΩB, with the same constitutive parameters, is

used to simulate the wave propagating in an unbounded space. The benchmark domain is

large enough so that there is no significant reflection from the boundary during the time of

interest. The test and benchmark domains are shown in Fig. 3.36.

To excite the test and the benchmark domains, a hard-line source on Hz component

is placed at the center of the test and benchmark domains. The source should have a very

smooth transition to zero in the time domain. A waveform that satisfies this characteristic

was suggested by [94] and repeated here as follows

Hz(at center of domain) =





α[10− 15cos(ω1ξ) + 6cos(ω2ξ)− cos(ω3ξ)] ξ ≤ τ

0 ξ > τ

(3.48)

where

α =
1

320
, τ = 10−9, ξ = n∆t, ωm =

2πm

τ
, m = 1, 2, 3



95

Fig. 3.36. The two-dimensional test and benchmark domains.

The time history and the frequency spectrum of the source in (3.48) are plotted in Figs.

3.37 and 3.38, respectively.

The errors caused by the tested ABCs are obtained by subtracting the field at the

observation point within ΩT from the field at the corresponding point in ΩB. The local

error is defined as

Eloc =
|HT

z (i, j)−HB
z (i, j)|

Hzmax
(3.49)

where Hzmax is the maximum magnitude of the Hz components at the center of the lower air-

PML interface and HT
z (i, j),HB

z (i, j) are magnetic fields in the test and benchmark domains,

respectively. The observation points are selected along the lower air-PML interface, as
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Fig. 3.37. The time history of the smooth pulse.

Fig. 3.38. The frequency spectrum of the smooth pulse.
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shown in Fig. 3.36. The global error is defined by

Eglb =
∑

i

∑

j

[HT
z (i, j)−HB

z (i, j)]2 (3.50)

As a reference, the local errors of Yee’s algorithm with 4, 8, and 16 PML layers at

t = 100∆t are plotted in Fig. 3.39. For N0 = 20 (at 1 GHz), the coefficients of the GNS24-2

scheme are computed to be C1 = 1.12592203 and C2 = −0.04232427. The local errors

for Fang’s and the GNS24-2 schemes are plotted in Fig. 3.40. As shown, the local errors

generated by Fang’s and the GNS24-2 scheme are about the same level as that of Yee’s

algorithm. The local error of the GNS24-2 scheme is slightly greater than that of Fang’s

algorithm.

The global errors versus time for Yee’s algorithm are plotted in Fig. 3.41. The global

errors for Fang’s and the GNS24-2 schemes are plotted in Fig. 3.42. As shown, the global

errors for all three methods with 4 or 8 PML layers are about the same level. However, for

16 PML layers, the global error of Yee’s algorithm at a later time is much smaller than that

generated by Fang’s algorithm and the GNS24-2 scheme. This probably can be attributed

to the larger error at the air-PML interface, which forms a higher noise floor for the two

schemes using the extended stencils.

From the above numerical experiments, the Berenger’s PML is able to effectively absorb

the outgoing waves simulated by Fang’s and the GNS24 schemes. For all the simulations

presented in this report, no instability was observed.

3.5.3. Numerical Simulations

Two numerical simulations, the 2D PEC square and the four-element array, will be

repeated for the GNS24 schemes. The geometry and the parameters used in the simulation
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Fig. 3.39. The local error of Yee’s algorithm (∆s = 0.015m,S = 0.5).
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Fig. 3.41. The global error of Yee’s algorithm (∆s = 0.015m, S = 0.5).
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can be found in Section 3.4.4. In the first example, the absolute errors of the resonant

frequencies for the same 2D cavity are plotted in Figs. 3.43 and 3.44. The design frequencies

of Figs. 3.43 and 3.44 are set to f0 = 0.3 GHz and f0 = 0.335 GHz, respectively. The

computed coefficients for the GNS24-1 and the GNS24-2 schemes are summarized in Table

3.5. As shown, for all of the resonant frequencies, the errors generated by the GNS24-1

scheme are always smaller than those of Fang’s scheme. The GNS24-2 scheme predicts

precisely the resonant frequency for each case when the design frequency is set to the

corresponding resonant frequency. However, the errors increase rapidly when the resonant

frequency deviates from the design frequency.

Table 3.5. Computed coefficients for the GNS24 schemes (S = 0.5,∆s = 0.1m)

f0 = 0.3GHz f0 = 0.335GHz

GNS24-1 C1 = 1.08871679
C2 = −0.02957226

C1 = 1.08951410
C2 = −0.02983803

GNS24-2 C1 = 1.12864748
C2 = −0.04437761

C1 = 1.12953082
C2 = −0.04508125

In the second example, the array factor of the four-element array is also simulated

using the GNS24-1 and the GNS24-2 schemes. The computed power patterns are plotted

in Fig. 3.45. The computed coefficients and the L2 errors are summarized in Table 3.6.

Compared to the L2 errors in Table 3.6, the error of the GNS24-1 is larger than those of the

NS24 and INS24 schemes but smaller than that of Fang’s scheme. However, the GNS24-2

scheme predicts the most accurate results.

The numerical simulations in this section clearly justifies the conclusions based on the

dispersion analysis. The extension to the 3D GNS24 scheme is straightforward. In addition,
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Table 3.6. Computed coefficients and the L2 error (S = 0.5,∆s = λ0/6,M = 361)

Coefficients L2 Error

GNS24-1 C1 = 1.09461960
C2 = −0.03153987

0.03989388

GNS24-2 C1 = 1.13483392
C2 = −0.04977567

0.01759012
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the capability of the GNS24 scheme will be explored in the following two section.

3.5.4. The Angle-Optimized GNS24 Scheme

In practice, there are some problems in which the dispersion errors in certain propa-

gation angles are dominant. For example, the simulation of an highly enlongated cavity or

the scattering from an electrically large PEC strip. An Angle-Optimized FDTD was pro-

posed in [57] using a filtering technique. However, to achieve the same goal of reducing the

dispersion in certain angle ranges, a more straightforward approach is to use the GNS24-2

scheme.

Recall that, to obtain the stencil coefficients of the GNS24 scheme, k̃/k is forced to

unity in (3.41) for all angles φ = 1◦ ∼ 90◦. If we force k̃/k = 1 only along the dominant

directions, a scheme with low dispersion within the desired angle range can be expected.

The GNS24 scheme presented in the pervious section is a special case where all directions

are equally important.

Two examples are presented to verify the above argument. In Fig. 3.46, the local

dispersion errors within the desired angles φi = 0◦ ∼ 15◦ are plotted. In Fig. 3.47, the

dominant angles are set to φi = 30◦ ∼ 60◦. The computed coefficients are summarized

in Table 3.7. As shown, the regular GNS24-2 scheme (φi = 0◦ ∼ 90◦) exhibits an more

Table 3.7. Computed coefficients of the angle-optimized GNS24 scheme (S = 0.5, N0 = 10)

C1 C2

φi = 0◦ ∼ 15◦ 1.12862263 -0.04436822
φi = 30◦ ∼ 60◦ 1.12867282 -0.04438673
φi = 0◦ ∼ 90◦ 1.12864733 -0.04437755
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Fig. 3.46. Local dispersion error of the GNS24-2 scheme (N0 = 10, S = 0.5, φi = 0◦ ∼ 15◦).
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evenly distributed dispersion. For the Angle-Optimized GNS24 (AOGNS24), the dispersion

errors along the desired directions are much lower than those of the regular GNS24-2 scheme.

However, for the angles of less interests, the AOGNS24 suffers from much greater dispersion

errors than the regular GNS24-2 scheme. It is evident that, by properly adjusting the

coefficient values of the stencil, the low dispersion directions of the AOGNS24 scheme can

be flexibly controlled. Notice that the variations of the coefficient values for different angle

ranges are subtle.

3.5.5. The GNS24 Scheme for the Rectangular Mesh

The dispersion analysis conducted so far are all using a square mesh (∆x = ∆y = ∆s).

Now, we will examine the performance of the GNS24 scheme for the rectangular mesh

(∆x 6= ∆y). For the 2D case, let us assume the ratio of the space increments with respect

to x and y is defined as R = ∆x/∆y > 1. Therefore, the mesh resolutions in the x and y

directions can be expressed as Nx = λ/∆x and Ny = λ/∆y = R × Nx, respectively. The

Courant number is defined based upon the larger space step (∆x) as S = c∆t/∆x.

For the rectangular mesh, it can be expected that the coefficients for the stencils with

respect to x and y will no longer be identical. Let Cx1 and Cx2 represent the coefficients

for the stencil with respect to x and Cy1 and Cy2 represent the coefficients for the stencil

with respect to y. The 2D GNS24 dispersion relation for the rectangular mesh can then be

written as

(
1

c∆t

)2

sin2

(
ω∆t

2

)
=

1
∆x2

[
Cx1 sin

(
k̃x∆x

2

)
+ Cx2 sin

(
3k̃x∆x

2

)]2

+
1

∆y2

[
Cy1 sin

(
k̃y∆y

2

)
+ Cy2 sin

(
3k̃y∆y

2

)]2

(3.51)
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where

k̃x = k̃ cos(φ), k̃y = k̃ sin(φ)

Equation (3.51) can be rewritten as

1
S2

sin2

(
πS

Nx

)
=

[
Cx1 sin

(
π cosφ

Nx

k̃

k

)
+ Cx2 sin

(
3π cosφ

Nx

k̃

k

)]2

+R2 ·
[
Cy1 sin

(
π sinφ

RNx

k̃

k

)
+ Cy2 sin

(
3π sinφ

RNx

k̃

k

)]2

(3.52)

The procedure to solve k̃/k in (3.52) is very similar to the square mesh case, while now there

are totally four unknowns Cx1, Cx2, Cy1, and Cy2. For R = 2, Nx0 = 10, and S = 0.25, the

coefficients for the GNS24-2 scheme are computed and summarized in Table 3.8.

Table 3.8. Computed GNS24-2 coefficients for the rectangular mesh (R = 2, Nx0 = 10, S =
0.25).

Cx1 1.05281421
Cx2 -0.01421612
Cy1 1.46453965
Cy2 -0.15900394

The local dispersion errors of the Fang’s algorithm and the GNS24-2 scheme are plotted

in Figs. 3.48 and 3.49, respectively. It is evident that the dispersion curve for Fang’s

algorithm is no longer 90◦ periodic. Compared to the curves for the square mesh in Fig.

2.19, a high dispersion error is observed in the vicinity of φ = 90◦ due to the different

mesh resolutions in the x and y directions. However, the effects of the rectangular mesh

is automatically compensated by the GNS24-2 scheme. A very low and more isotropic

dispersion distribution can be observed.
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3.5.6. More Complex Stencils

The procedure summarized in the previous sections can be applied, but not limited to,

the GNS24 scheme. More complex stencils can be derived following a similar procedure. In

this section, an “Isotropic” Finite Difference (IFD) presented in [28] will be considered as

an example. In two dimensions, the space stencil of the generalized IFD scheme (GIFD)

uses six-point stencils which can be expressed as

Dx(fi,j) =
D1(fi+1/2,j − fi−1/2,j)

∆s

+
D2(fi+1/2,j+1 + fi+1/2,j−1 − fi−1/2,j+1 − fi−1/2,j−1)

∆s
(3.53)

Dy(fi,j) =
D1(fi,j+1/2 − fi,j−1/2)

∆s

+
D2(fi+1,j+1/2 + fi−1,j+1/2 − fi+1,j−1/2 − fi−1,j−1/2)

∆s
(3.54)

where D1 and D2 are undetermined coefficients. If D1 = 11/12 and D2 = 1/24, (3.53) and

(3.54) reduce to the regular IFD scheme in [28]. The 2D stencils for the GIFD stencils are

illustrated in Fig. 3.50.

From Taylor series expansion, it can be derived that the constraint for (3.53) and (3.54)

to maintain the second-order accuracy is

D1 + 2D2 = 1 or D1 = 1− 2D2 (3.55)

Similarly, a more relaxed constraint is

D1 + 2D2 = q or D1 = q − 2D2 (3.56)

where q is an extra free parameter. We refer the scheme using (3.55) as GIFD26-1 and the

scheme using (3.56) as GIFD26-2.
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Fig. 3.50. The 2D general six-point stencils.

The dispersion relation of the general (2,6) scheme can be derived and written as

1
S2

sin2

(
πS

N

)
=

[
D1 + 2D2 cos

(
2π sinφ

N

k̃

k

)]2

sin2

(
π cosφ

N

k̃

k

)

+

[
D1 + 2D2 cos

(
2π cosφ

N

k̃

k

)]2

sin2

(
π sinφ

N

k̃

k

)
(3.57)

Following a similar procedure, I equations are obtained by forcing k̃/k = 1 at N = N0

along φi = 0◦ ∼ · · · , 90◦, i = 1, 2, · · · , I. This leads to a nonlinear overdetermined system

which can be expressed as

Fi(D1, D2) = b2
i [D1 + 2aiD2]2 + d2

i [D1 + 2ciD2]2 − e = 0, i = 1, 2, · · · , I (3.58)

where

ai = cos
(

2π sinφi

N0

)
, bi = sin

(
π cosφi

N0

)

ci = cos
(

2π cosφi

N0

)
, di = sin

(
π sinφi

N0

)

e =
1
S2

sin2

(
πS

N0

)
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Equation (3.58) can be rewritten as

Fi(D1, D2) = fiD
2
1 + giD

2
2 + hiD1D2 − e = 0, i = 1, 2, · · · , I (3.59)

where

fi = b2
i + d2

i

gi = 4(a2
i b

2
i + c2

i d
2
i )

hi = 4(aib
2
i + cid

2
i )

The resultant overdetermined system in (3.59) can be solved following a similar procedure

summarized in (3.44)-(3.48). The initial values are chosen to be the coefficients for the

regular six-point stencil, i.e.,D0 = [11/12, 1/24]. The computed coefficients using I = 401

for different N0 are summarized in Table 3.9.

Table 3.9. Computed coefficients for the GIFD26 schemes (S = 0.5)

N0 = 10 N0 = 20

GIFD26-1 D1 = 1.08464967
D2 = −0.04232484

D1 = 1.08365977
D2 = −0.04182988

GIFD26-2 D1 = 0.92662022
D2 = 0.04292245

D1 = 0.91913928
D2 = 0.04197646

Using the computed coefficients, the local dispersion errors for the IFD26, GIFD26-1,

and GIFD26-2 schemes are plotted in Fig. 3.51. As shown, the IFD26 scheme does exhibit

an “isotropic” dispersion distribution; the dispersion variation with angles is negligible.

However, the average level of its dispersion is still very high. The average dispersion error

of the GIFD26-1 scheme is smaller than that of the IFD26 scheme, while it suffers from
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Fig. 3.51. Local dispersion error of the GIFD26 schemes (N = N0 = 10, S = 0.5).

more anisotropy. As a comparison, the GIFD26-2 scheme exhibits no visible dispersion

error at N = N0.

The global dispersion errors for N0 = 10 and N0 = 20 are plotted in Figs. 3.52-3.53,

respectively. It is evident that the GIFD26-1 algorithm is a broad-band scheme in terms of

the average dispersion error. However, the GIFD26-2 scheme is a narrow-band scheme. At

the corresponding mesh resolution, the minimum dispersion errors are even smaller than

those of the GNS24-2 scheme in Figs. 3.34 and 3.35.

3.5.7. Stability Condition

Another important issue for the NSFD methods is the stability condition which guar-

antees the convergence of the algorithm. Conventionally, the stability condition can be

obtained by performing a Von Neuman analysis [88] or following a more concise approach
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Fig. 3.52. Global dispersion error of the GIFD26 schemes (N0 = 10, S = 0.5).
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Fig. 3.53. Global dispersion error of the GIFD26 schemes (N0 = 20, S = 0.5).
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based on the complex frequency analysis. In this section, the procedure of [1] will be used

to solve the stability condition for the NSFD algorithms.

Let us consider the 2D GNS24-2 scheme as an example. In (3.51), solving for ω leads

to

ω =
2

∆t
sin−1(ξ) (3.60)

where

ξ = c∆t

√√√√√√√
1

∆x2

[
Cx1 sin

(
k̃x∆x

2

)
+ Cx2 sin

(
3k̃x∆x

2

)]2

+ 1
∆y2

[
Cy1 sin

(
k̃y∆y

2

)
+ Cy2 sin

(
3k̃y∆y

2

)]2
(3.61)

To guarantee that ω in (3.60) has a real value, ξ in (3.61) must satisfy ξ ≤ 1. Since Cx1 >

0, Cx2 < 0 and Cy1 > 0, Cy2 < 0, the maximum value of ξ is achieved when (k̃x∆x)/2 =

(k̃y∆y)/2 = π/2. Consequently,

ξmax = c∆t

√
(Cx1 − Cx2)2

∆x2
+

(Cy1 − Cy2)2

∆y2
≤ 1 (3.62)

Rearranging (3.62), we obtain

∆t ≤ 1

c
√

(Cx1−Cx2)2

∆x2 + (Cy1−Cy2)2

∆y2

(2D) (3.63)

which is the stability condition for the 2D GNS24-2 algorithm. Following a similar proce-

dure, the 1D and 3D stability conditions can be derived and expressed as

∆t ≤ ∆x

c(C1 − C2)
(1D) (3.64)

∆t ≤ 1

c
√

(Cx1−Cx2)2

∆x2 + (Cy1−Cy2)2

∆y2 + (Cz1−Cz2)2

∆z2

(3D) (3.65)

For the cubic mesh case (∆x = ∆y = ∆z = ∆s), the stability conditions reduce to

S =
c∆t

∆s
≤ 1

(C1 − C2)
(1D) (3.66)
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S =
c∆t

∆s
≤ 1√

2(C1 − C2)
(2D) (3.67)

S =
c∆t

∆s
≤ 1√

3(C1 − C2)
(3D) (3.68)

3.6. Gauss’s Laws

Maxwell’s equations contain Faraday’s Law in (2.5), Ampere’s Law in (2.6) and Gauss’s

Laws for electric and magnetic fields in (2.7) and (2.8). However, most FDTD methods only

differentiate the former two equations without considering the two Gauss’s Laws. Therefore,

it is important to justify that any FDTD scheme also satisfies Gauss’s Laws. In source-free

regions, this requires that no artificial electric and magnetic charges are generated inside

the domain. In Cartesian coordinates, it has been verified that Yee’s algorithm satisfies

Gauss’s Law for rectangular meshes [1]. However, it remains unclear if the NSFD methods

meet this fundamental requirement. In this section, Gauss’s Law for the electric fields will

be examined for the NSFD algorithms. Gauss’s Law for the magnetic fields can be derived

following a very similar procedure. For conciseness, only the 2D (TEz) case is considered.

The derivations for the 2D (TM z) and the 3D cases are similar.

In a 2D free-space region, Gauss’s Law for electric fields can be written in both the

differential and integral forms as

Differential form: ∇ · ~D = 0 (3.69)

Integral form:
∮

C

~D · ~dl = 0 (3.70)
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where C is an arbitrary closed contour. The time derivatives of Gauss’s Laws in (3.69) and

(3.70) are also zero since all the fields at the initial time are zero. Two semi-discretized

NSFD update equations for the Ex and Ey fields

ε0
∂

∂t
Ex|i+1/2,j = Dns

y (Hz|i+1/2,j) (3.71)

ε0
∂

∂t
Ey|i,j+1/2 = −Dns

x (Hz|i,j+1/2)) (3.72)

will be used in the derivation. In (3.71) and (3.72), Dns
x and Dns

y represent the NSFD space

stencils with respect to x and y, which could be the NS, INS, or GNS operators introduced

in the previous sections.

In the 2D Cartesian coordinates, the rectangular FDTD grids (∆x 6= ∆y) are shown

in Fig. 3.54. For clarity, the position index of each field component is suppressed. All the

involved fields are numbered in sequence according to the superscripts. Two closed contours,

designated as L1 and L2, are also illustrated in Fig. 3.54. Gauss’s Law in differential form

is defined at the center point which is represented by the empty circle in Fig. 3.54 while

Gauss’s Law in integral form describes the total charge encompassed by the L1 contour.

3.6.1. The NS22 Scheme

As a first example, let us consider the NS22 scheme where Dns
x and Dns

y are given as

Dns22
x fi =

(fi+1/2 − fi−1/2)
skx

(3.73)

Dns22
y fj =

(fj+1/2 − fj−1/2)
sky

(3.74)

where skx and sky are correction parameters which possess different values for the rect-

angular mesh. Using the standard second-order central difference, the time derivative of
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Fig. 3.54. Illustration of the 2D rectangular FDTD grids (TEz).

(3.69) can be differentiated and written as

∂

∂t
∇ · ~D = ε0

∂

∂t

(
∂Ex

∂x
+

∂Ey

∂y

)

≈ ε0
∂

∂t

(
E1

x − E2
x

∆x
+

E1
y −E2

y

∆y

)
(3.75)

where E1
x, E2

x and E1
y , E2

y are used to evaluate the derivatives in the x and y directions,

respectively. Substituting (3.71) and (3.72) for NS22 into (3.75) yields

∂

∂t
∇ · ~D ≈ (H1

z −H4
z −H2

z + H3
z )

(
1

sky∆x
− 1

skx∆y

)
(3.76)

Notice that, for arbitrary Hz-fields, Gauss’s Law will not be satisfied unless the follow-

ing constraint

skx

∆x
=

sky

∆y
(3.77)
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is met. It is evident that the optimal skx and sky values for the regular NS22 scheme,

defined in (3.4), do not satisfy this constraint. In other words, the regular NS22 scheme

does not satisfy Gauss’s Law using the standard differentiation. If we were to enforce the

constraint in (3.77), the optimal values of skx and sky, defined in (3.4), will not be obtained.

Consequently, the dispersion performance of the NS22 scheme will be compromised.

Naturally, an alternative way of differentiating (3.75) is to use the NS22 operators in

(3.73) and (3.74), which are self-consistent to the scheme. Following a similar procedure,

this leads to

∂

∂t
∇ · ~D ≈ ε0

∂

∂t

(
E1

x − E2
x

skx
+

E1
y − E2

y

sky

)

= (H1
z −H4

z −H2
z + H3

z )
(

1
skyskx

− 1
skxsky

)
= 0 (3.78)

That is, Gauss’s Law in differential form is satisfied.

In Cartesian coordinate, Gauss’s Law in integral form can be evaluated along the L1

contour. This leads to

∂

∂t

∮

C

~D · ~dl ≈ ε0
∂

∂t
[(E1

x −E2
x)∆y + (E1

y −E2
y)∆x] (3.79)

Substituting (3.71) and (3.72) into (3.79) and collecting terms yields

∂

∂t

∮

C

~D · ~dl ≈ (H1
z −H4

z −H2
z + H3

z )
(

∆y

sky
− ∆x

skx

)
(3.80)

Clearly, forcing (3.80) equal to zero leads to the same constraint as in (3.77). Again, if ∆x

and ∆y in (3.79) are replaced by skx and sky, respectively, Gauss’s Law in integral form is

satisfied.
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3.6.2. The GNS24 Scheme

Next, let us consider the 2D GNS24 scheme. The NS and INS schemes are special

cases of the GNS24 scheme. The space stencils of the 2D GNS24 scheme are repeated as

Dgns24
x fi =

Cx1(fi+1/2 − fi−1/2) + Cx2(fi+3/2 − fi−3/2)
∆x

(3.81)

Dgns24
y fj =

Cy1(fj+1/2 − fj−1/2) + Cy2(fj+3/2 − fj−3/2)
∆y

(3.82)

Following a similar procedure, (3.69) can be differentiated using the standard fourth-order

stencil and written as

∂

∂t
∇ · ~D ≈ ε0

∂

∂t

[
27
24(E1

x − E2
x)− 1

24(E3
x −E4

x)
∆x

]

+ ε0
∂

∂t

[
27
24(E1

y − E2
y)− 1

24(E3
y −E4

y)
∆y

]
(3.83)

where E1
x, E2

x, E3
x, E4

x and E1
y , E2

y , E3
y , E4

y are used to evaluate the derivatives in the x and

y directions, respectively. Substituting (3.71) and (3.72) for GNS24-2 into (3.83) yields

∂

∂t
∇ · ~D ≈ [(27(Cy1 − Cx1)(H1

z −H4
z −H2

z + H3
z )

+ (27Cy2 + Cx1)(H6
z −H13

z −H7
z + H12

z )

− (27Cx2 + Cy1)(H16
z −H15

z −H9
z + H10

z )

− (Cy2 − Cx2)(H5
z −H14

z −H8
z + H11

z )] · 1
24∆x∆y

Similar to the NS22 case, Gauss’s Law will not be satisfied unless the following constraints

Cx1 = Cy1 = C1 (3.84)

Cx2 = Cy2 = C2 (3.85)

C1 + 27C2 = 0 (3.86)



119

are met. It can be verified that the optimal GNS24 coefficients in Table 3.5.5 do not satisfy

these constraints. Enforcing these extra constraints on the stencil coefficients compromises

the dispersion performance.

An alternative way of differentiating (3.69) is to use the GNS24 operators defined in

(3.81) and (3.82). This leads to zero divergence and can be expressed as

∂

∂t
∇ · ~D ≈ ε0

∂

∂t

[
Cx1(E1

x − E2
x) + Cx2(E3

x − E4
x)

∆x

]

+ ε0
∂

∂t

[
Cy1(E1

y − E2
y) + Cy2(E3

y − E4
y)

∆y

]
= 0 (3.87)

For Gauss’s Law in integral form, a direct integration along L1 leads to

∂

∂t

∮

C

~D · ~dl ≈ (Cy1 − Cx1)(H1
z −H4

z −H2
z + H3

z )

+ Cy2(H6
z −H13

z −H7
z + H12

z )

+ Cx2(H16
z −H9

z −H15
z + H10

z ) (3.88)

For arbitrary Hz fields, the second and third terms in (3.88) will never vanish unless Cx2 =

Cy2 = 0.

However, multiplying both sides of (3.88) with ∆x∆y and reorganizing, we obtain

(∆x∆y)
∂

∂t
∇ · ~D ≈ ε0

∂

∂t

[
Cx1(E1

x − E2
x)∆y + Cy1(E1

y − E2
y)∆x

]

+ ε0
∂

∂t

[
Cx2

3
(E3

x −E4
x)3∆y +

Cy2

3
(E3

y − E3
y)3∆x

]

≈
∮

L1

~D · ~dl +
∮

L2

~D · ~dl (3.89)

Thus, the integral-form of Gauss’s Law can be approximated using the weighted sum of the

closed integrals along two contours: L1 and L2. Since (3.89) is derived from Gauss’s Law

in differential form, the same statements can be made for Gauss’s Law in integral form.
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That is, the standard formulation does not satisfy Gauss’s Law unless extra constraints

are enforced. However, using the nonstandard formulation, Gauss’s Law is automatically

satisfied.

To further evaluate Gauss’s Laws, a simple numerical simulation is performed, as shown

in Fig. 3.55. A free-space region (TEz), excited with a soft Gaussian pulse (ndecay = 10,

n0 = 3ndecay [1]) at the domain center (is, js), is simulated using both the NS22 and the

GNS24-2 schemes. The design frequency for each of the scheme is set to f0 = 300 MHz.

The simulation domain is large enough so that there is no reflection from the edges within

the simulation duration of interest. Rectangular cells with ∆x = 0.1m and ∆y = 0.05m are

used. The Courant number is set to S = 0.25. Electric charge densities at a point away

from the source (is + 3, js + 3) are computed and normalized with Dx(is, js). The normal-

ized electric charge densities are plotted in Fig. 3.56 using the standard differentiation of

(3.75) and (3.83) in Fig. 3.57 using the nonstandard differentiation of (3.78) and (3.87).

It is evident that artificial charges are observed in the source-free region if the standard

formulations are used. However, the nonstandard formulations reduce the artificial charges

by a factor of nearly 104.

Based on the above discussions, the following conclusions can be made concerning

Gauss’s Laws for the NSFD algorithms. In the source-free region, the standard formulations

do not satisfy Gauss’s Law unless extra constraints on the stencil coefficients are enforced.

These constraints are not desirable since they sacrifice the dispersion performance of the

NSFD schemes. Using the nonstandard formulations, Gauss’s Law (both in differential and

integral forms) is automatically satisfied.
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Fig. 3.55. Geometry of the simulated free-space region.

3.7. The Material Interface Conditions

One of the greatest barriers for the schemes using the extended stencils is the proper

material interface treatments. Even if there is no staircase error, the extended stencils fail

to accurately predict the interaction near the material interfaces [85]. Many efforts have

been made to minimize the errors due to material interfaces. Among them, there are the

hybrid FDTD(2,2)/FDTD(2,4) scheme [72]– [76], the one-sided stencils [77], [78], and the

derivative-matching technique [81]. Recently, a very different approach was presented for

Yee’s algorithm to reduce the artifacts due to the material discontinuities [82]– [84]. The

approach used in [82]– [84] is similar to that used to derive the NSFD algorithms. That is,

the coefficients in the space stencils are allowed to be adjusted. By forcing the numerical

results to be equal to the exact solutions at a certain design frequency, the values of those

free coefficients can be determined. In this report, the basic concept of [82]– [84] is extended

to the four-point finite difference stencils.
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Fig. 3.56. Normalized electric charge densities using the standard differentiation of (3.75)
and (3.83).

0 100 200 300 400 500
−4

−2

0

2

4

6

8

10

12

14

16
x 10

−7

Time step (∆t)

N
or

m
al

iz
ed

 e
le

ct
ric

 c
ha

rg
e 

de
ns

ity

NS22 (Nonstandard Differentiation)
GNS24 (Nonstandard Differentiation)

Fig. 3.57. Normalized electric charge densities using the nonstandard differentiation of
(3.78) and (3.87).



123

Fig. 3.58. One-dimensional material discontinuity.

3.7.1. Formulation

In a one-dimensional homogeneous medium, x-polarized plane waves traveling in ±z

directions can be modeled by Maxwell’s equations in the form of

−∂Ex

∂t
=

1
ε

∂Hy

∂z
(3.90)

−∂Hy

∂t
=

1
µ

∂Ex

∂z
(3.91)

Let us consider that a dielectric discontinuity, formed by two different dielectric media

(ε1 and ε2) exists at z = 0, as shown in Fig. 3.58. A uniform mesh, with the space step

∆z is used everywhere. Without loss of generality, an Ex field is located at the interface

(z = 0).

The exact solutions, for the normalized E- and H-fields in the two different media, are

given as [2]
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Medium 1:

E1 =
(
e−jk1z + Γejk1z

)
(3.92)

H1 =
1
η1

(
e−jk1z − Γejk1z

)
(3.93)

Medium 2:

E2 = (1 + Γ)e−jk2z (3.94)

H2 =
(1 + Γ)

η2
e−jk2z (3.95)

where η1 and η2 are the wave impedances in medium 1 and 2, respectively; k1 and k2 are the

wave numbers in different media at a design frequency f0; and Γ is the reflection coefficient

from medium 1 toward medium 2 at the interface, which can be written as

Γ =
η2 − η1

η2 + η1
(3.96)

In a homogeneous medium, the regular fourth-order finite difference stencil [15]

D(fi) =
fi−3/2 − 27fi−1/2 + 27fi+1/2 − fi+3/2

∆z
(3.97)

can be used to discretize the space derivatives in (3.90) and (3.91). However, the direct

application of (3.97) near the dielectric interface will cause significant errors [85]. In [81], it

was reported that these errors can be greatly reduced by using a modified stencil near the

interface, which can be expressed as

D̃(fi) =
C1fi−3/2 + C2fi−1/2 + C3fi+1/2 + C4fi+3/2

∆z
(3.98)

where C1, C2, C3, and C4 are unknown coefficients which need to be optimized. The regular

fourth-order stencil in (3.97) can be viewed as a special case of (3.98). In Fig. 3.58, three
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E-fields (at z = −∆z, 0,∆z) and two H-fields (at z = −∆z/2,∆z/2) will be influenced

by the material discontinuities due to the width of the four-point stencil. Therefore, the

update equations for the E− and H− fields near the interface can be modified as

(
E|n+1

i − E|ni
)

∆t
= − 1

εi
D̃

(
H|n+1/2

i

)
, i = −1, 0, 1 (3.99)

(
H|n+1/2

i −H|n−1/2
i

)

∆t
= − 1

µi
D̃ (E|ni ) , i = −1/2, 1/2 (3.100)

There are four unknown coefficients for each of the five update equations in (3.99) and

(3.100). In [81], the method to find the unknown coefficients involves the use of fictitious

points and solving the resultant algebraic equations. Alternatively, a more straightforward

approach, which is originally proposed for Yee’s algorithm in [82] - [84], can be generalized

to optimize the general four-point stencil. Unlike the treatment for Yee’s algorithm, two

types of interface conditions can be derived for the fourth-order stencil.

3.7.1.1. Condition 1

As an example, let us consider the update equation for the E-field at i = 0. Replacing

the E- and H-fields in (3.99) by the exact solutions in (3.92) and (3.93) at a design frequency

f0 and equating the real and imaginary parts, we obtain two equations with four unknowns

(C1, C2, C3, C4). By forcing C1 = 1/24 and C2 = −27/24 (i.e., the coefficients for the

regular fourth-order stencil), the unknowns reduce to two (C3, C4). The resultant equations

can be rewritten in the matrix form as



a11 a12

a21 a22


 ·




C3

C4


 =




b1

b2


 (3.101)
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where

a11 =
24(1 + Γ) cos(k2∆z/2)

η2
, a12 =

24(1 + Γ) cos(3k2∆z/2)
η2

,

a21 = −24(1 + Γ) sin(k2∆z/2)
η2

, a22 = −24(1 + Γ) sin(3k2∆z/2)
η2

,

b1 =
(1− Γ)[27 cos(k1∆z/2)− cos(3k1∆z/2)]

η1
,

b2 = −48(1 + Γ)ε∆z sin(ω∆t/2)
∆t

+
(1− Γ)[27 cos(k1∆z/2)− cos(3k1∆z/2)]

η1
(3.102)

are constants. The values of C3, C4 can be determined by solving (3.101). The other four

sets of unknown coefficients for i = ±1,±1/2 can be found using a similar approach. In the

rest of the report, the scheme using these coefficients is referred to as Condition 1.

3.7.1.2. Condition 2

Note that the general stencil of (3.98) allows a total of four free coefficients. However,

in Condition 1, only two of them were used. To take advantage of the extra two degrees

of freedom, we can introduce a second design frequency f ′0. By doing this, we can also

expect to obtain a more broad-band scheme. Again, let us consider the update equation for

the E-field at i = 0. Substituting the exact solution into (3.92) and (3.93) for two design

frequencies f0, f
′
0 into (3.99), and equating the real and imaginary parts, yields the matrix

equation 


a11 a12 a13 a14

a21 a22 a23 a24

a′11 a′12 a′13 a′14

a′21 a′22 a23 a′24




·




C1

C2

C3

C4




=




b1

b2

b′1

b′2




(3.103)
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where

a11 =
(1− Γ) cos(3k1∆z/2)

η1
, a12 =

(1− Γ) cos(k1∆z/2)
η1

a13 =
(1 + Γ) cos(k2∆z/2)

η2
, a14 =

(1 + Γ) cos(3k2∆z/2)
η2

a21 =
(1− Γ) sin(3k1∆z/2)

η1
, a22 =

(1− Γ) sin(k1∆z/2)
η1

a23 = −(1 + Γ) sin(k2∆z/2)
η2

, a24 = −(1 + Γ) sin(3k2∆z/2)
η2

b1 = 0, b2 = −2∆zε(1 + Γ) sin(ω∆t/2)
∆t

are constants corresponding to the first design frequency f0. The matrix elements a′i,j and

b′i,j have similar expressions as ai,j and bi,j except that ω, k1, k2 are replaced by ω′, k′1, k
′
2

corresponding to the second design frequency f ′0. The values of C1, C2, C3, C4 can be deter-

mined by solving (3.103). The other four sets of unknown coefficients can be determined

similarly. The scheme using these coefficients is referred to as Condition 2.

3.7.2. Numerical Simulations

A classical problem [77], [81], a one-dimensional partially-filled dielectric cavity as

shown in Fig. 3.59, is used to evaluate the aforementioned interface conditions. In Fig.

3.59, N (even number) is the total number of cells used to mesh the cavity. By enforcing

the corresponding boundary conditions at the PEC and dielectric interfaces, the closed form

solutions for the E- and H-fields can be readily derived [2] and written as

E(z) =





sin(k1z), 0 ≤ z ≤ 1

C cos(k2z) + D sin(k2z), 1 < z ≤ 2
(3.104)

H(z) =





k1
jωµ0

cos(k1z), 0 ≤ z ≤ 1

− k2C
jωµ0

sin(k2z) + k2D
jωµ0

sin(k2z), 1 < z ≤ 2
(3.105)
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Fig. 3.59. One-dimensional partially-filled cavity.

where

C = 2 sin(k1) cos(k2), D = −sin(k1) cos(2k2)
sin(k2)

Assuming that εr1 = 1 and εr2 = 2.25, one of the resonant frequencies is 242.0138 MHz.

This frequency will be used in all of the simulations.

The regular FDTD(2,4) [15] or the NS24 [91] schemes will be applied to the update

equations in the homogeneous regions. Near the material interface, Condition 1 or 2 will

be enforced. The PEC boundaries are modeled using image theory. The only differences

between the regular stencils and the interface conditions are the coefficients. Consequently,

similar fourth-order stencils, with different coefficients, can be consistently applied through-

out the domain. The coefficients for the interface conditions will be calculated once, using

(3.101) or (3.103), before the time loop starts. To measure the accuracy, the L2 error is

defined as [85]

‖E‖2 =

√√√√∆z
N∑

i=0

(Ũi − Ui)2 (3.106)
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Fig. 3.60. The snapshot of the E- and H-fields for N0 = 80.

where Ũi represents the numerical E- and H-fields predicted by FDTD; Ui designates the

exact solution given by (3.104) and (3.105).

In the first example, we initially consider Condition 1. Since Condition 1 is derived for

a single frequency, NS24 will be applied in the homogeneous region to minimize dispersion.

In the simulation, the design number of cells and the Courant number are set to be N0 = 80

and S = 0.85, respectively. The total number of time steps for different N is 2048(N/24).

Snapshots of the E- and H-fields for N0 = 80 are plotted in Fig. 3.60. It is evident that

the NS24 scheme with Condition 1 predicts almost the exact solution. The L2 error of the

E-field versus N , with and without Condition 1 near the material interface, are plotted in

Fig. 3.61. As shown, at N = N0 the error generated by NS24 scheme with Condition 1 is

extremely small. However, the error increases rapidly as N deviates from N0.
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As a second example, Condition 2 is considered. To evaluate the broad-band perfor-

mance, the standard FDTD(2,4) is used throughout the homogeneous region. Indeed, the

update coefficients for Condition 2 are weak functions of the design number of cells N0,N ′
0.

In other words, varying N0 and N ′
0 will not alter the coefficients significantly. In the fol-

lowing, N0 and N ′
0 will be set to 320 and 1× 106, respectively. To demonstrate the order of

accuracy in the entire space domain, a very small Courant number S = 0.01 is used. The

L2 error of the E-field versus N , with and without Condition 2, are plotted in Fig. 3.62.

As shown, due to the error generated near the material interface, FDTD(2,4) without the

interface treatment exhibits only second-order accuracy. However, fourth-order accuracy is

fully restored if Condition 2 is applied near the interface.

In summary, two dielectric interface conditions are designed for the four-point space

stencils. Condition 1 is almost exact at the design frequency. However, this ideal perfor-

mance is very narrow band. Condition 2 generates a real fourth-order scheme in the space

domain. However, a very small Courant number has to be used to achieve the fourth-order.

An alternative approach is to use a fourth-order discretization, for example RK4 [85], in

the time domain.
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Fig. 3.61. L2 error of the E-fields (Condition 1).

Fig. 3.62. L2 error of the E-fields (Condition 2).



CHAPTER 4

THE EFFECTS OF PASSENGERS ON PED MUTUAL COUPLING

An important EMI issue for commercial aircraft is the possibility of interference gen-

erated by on-board personal electronic devices (PEDs), such as cell phones, CD players,

laptop computers, etc. “It is a common policy of all commercial airlines to prohibit the use

of PEDs during at least the very sensitive phases of take-off and landing, if not for the entire

duration of the flights. The policy has been established because it is believed that radiated

emissions from PEDs can interfere with the aircraft electronic equipment, i.e., jamming in

the communication systems” [72], [76].

In Georgakopoulos, et al, the mutual coupling between a simulated PED, located in

the cabin area of a simplified scale model aircraft fuselage, and an antenna mounted on

the exterior of the fuselage was predicted using the FDTD and compared with measure-

ments [72], [76]. This work, however, was performed for a completely empty fuselage. An

airline fuselage is of course highly populated with various structures: metal frames, foam

seat cushions, duct work, wires, various plastics, insulating and decorative materials, etc.

An ideal model would include all of these geometrical details and material properties, but

the complexity and computational resources involved in such an undertaking renders it im-

practical. Some of these structures can be neglected. Surprisingly, it has been reported

that the seat cushions and even their metal frames have a negligible impact on the coupling

of such antennas [96]. Passengers, on the other hand, are a class of structures which have

a high probability of modifying the EMI environment found within the perforated metallic

cavity of an aircraft fuselage due to their dispersive and lossy constituent materials. Model-

ing the enormous complexity of the human body, particularly using uniform discretization
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across a solution space on the scale of an airliner, is also prohibitive. Instead, the low-

order approximate passenger modeled here is represented by a geometrically simple shape

composed of a single bulk material.

In this chapter, the S-parameters of a simulated PED located within a scaled fuselage-

like enclosure and an antenna mounted on the exterior of this enclosure are both measured

and computed using the FDTD method [1], [6]. The S-parameters are determined for the

case in which the enclosure is populated with simplified ”passengers,” and compared with

those for the case of the empty enclosure.

4.1. Geometry

The ”Simplified Fuselage” is an aluminum box having a rectangular cross section that

would enclose the fuselage of a 1:20 scaled Boeing 757. Although individually larger than

their scaled counterparts, the cabin windows have approximately the same aperture area per

unit length as those of a scaled 757, and the Simplified Fuselage has a large aperture at one

end to represent the cockpit windows. To ease fabrication and handling, the overall length

of the Simplified Fuselage is 75% that of a scaled 757. Additional dimensional details can

be found in [72], [76]. The image in Fig. 4.1 is of the CAD model for the empty Simplified

Fuselage, from which the relative locations of the simulated PED and the external antenna

can be discerned.

The structure of the human body is extremely complex, and consists of a variety of

dispersive and lossy materials [1], [11], [97]. Modeling all the details of the human body is

beyond the scope of this work. However, approximately 70% by weight of the human body is

blood which has salinity close to 0.9% (grams/liter). Therefore, circular-cross-section plastic
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Fig. 4.1. Geometry of the empty Simplified Fuselage (the letters denote the locations of
the cabin windows).

tubes containing 0.9% salt water were used to simulate the passengers. As illustrated in

Figs. 4.2 and 4.3, there are 6 passengers on every row, and 15 rows (90 passengers in total)

inside the fuselage. The distance between the adjacent rows is 75 mm.

4.2. Measurements

To provide experimental data with which to compare to the FDTD simulations, mea-

surements were made of the coupling between the simulated PED and the external antenna.

These measurements were made with the Simplified Fuselage empty, and with the passen-

gers in place.
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Fig. 4.2. Cross section of the Simplified Fuselage illustrating the geometrical relationships
between the simulated PED, the exterior antenna, and the simulated passengers.
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Fig. 4.3. Geometry of the Simplified Fuselage filled with 90 passengers.
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4.2.1. Passengers

The low-order approximation to scaled passengers consists of 90 mm long, 15.9 mm

diameter thin-walled “propionate” plastic tubing filled with 0.9% salt water. Top and

bottom plug caps were used to close the tubes. A small hole was drilled through each of

the top caps to allow the air displaced as the cap was installed to escape.

To keep the passengers in their designated locations and upright, an expanded

polystyrene support system was made. In a sheet of 1” thick polystyrene, holes were cut

according to the FDTD model with the help of a wood template, as shown in Fig. 4.4.

A circular brass tube with its edge sharpened was used to cut the holes into which the

passengers were placed. To keep the passengers from falling through, a second layer of

expanded polystyrene was placed beneath the first. Finally, expanded polystyrene spacers

were used beneath the support system to place the passengers at the designed height within

the Simplified Fuselage. The complete set of 90 passengers and their support system is

shown in Fig. 4.5.

The permittivity and loss tangent of the saline solution was measured using Hewlett-

Packard’s open-ended coaxial Dielectric Probe [98]. The measurement setup is shown in

Fig. 4.6. The measured permittivity and effective conductivity of the 0.9% salt water at

20◦C are plotted in Figs. 4.7 and 4.8, respectively.

4.2.2. Measurement Setup

The experimental setup is essentially identical to that for the PED measurements

previously reported [72], [76]. A detailed description of the setup and measurements follows.

The measurements were made in the anechoic chamber to preclude the possibility
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Fig. 4.4. A top view photograph of the expanded polystyrene passenger support, and the
wood template and brass tube used to cut the holes.

Fig. 4.5. A photograph of the 90 passengers in their support structures.
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Fig. 4.6. The setup for the measurements of the permittivity and conductivity of the 0.9%
salty water.
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Fig. 4.7. Measured permittivity of the 0.9% salt water at 20◦C.
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Fig. 4.8. Measured effective conductivity of the 0.9% salt water at 20◦C.
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Fig. 4.9. An end-view photograph of the Simplified Fuselage, setup in the anechoic chamber
with the instrumentation beneath it. The front panel had not yet been copper taped to the
fuselage, revealing the simulated passengers and their expanded polystyrene supports.

of environmental scattering. The Simplified Fuselage was placed near the center of the

chamber, and was supported approximately 84 cm (33 inch) above the floor with blocks

of expanded polystyrene. The only significance of this height is that it was convenient for

placing the synthesizer and S-parameter test set of the network analyzer beneath the model,

thus minimizing the lengths of the RF cables. Carbon-loaded foam absorber was placed

on the instrumentation to reduce any scattering that might occur. A 15 m (50-foot)-long

IEEE-488 cable enabled the HP8510 processor to communicate with the source and test set,

and a 12 m (40-foot)-long IF cable plumbed the measured results to the HP8510 detector,

located outside of the chamber. A photograph of the setup within the anechoic chamber is

shown in Fig. 4.9.
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One of the RF cables passed through a hole in the fuselage floor and into the hollow

pedestal on which the monopole (which simulates the PED) was mounted. A 51 cm (20

inches) long “Gold Tipped” Addams-Russell precision cable was used here to capitalize on

its interchangeable interface. A female APC-3.5 connector was used to measure the ”Thru”

standards of the full 2-port calibration. The female connector was removed and replaced

with a phase-matched male APC-3.5 connector with which the other calibration standards

and the S-parameters were measured.

A 1.5 m (5-foot)-long braided cable that had been wrapped with ferrite-loaded elas-

tomeric absorbing material was used to connect the external monopole to the other port of

the test set.

4.2.3. Calibration and Measurement Parameters

Extremely rapid amplitude variations occur as a function of frequency in S12 between

the PED and the external antenna due to the reverberations within the fuselage. However,

the maximum number of frequency points that can be measured in one sweep with the

network analyzer is 801. This is insufficient to accurately sample these frequency response

variations over the desired band of 50 MHz to 6 GHz. To increase the sampling density, six

bands of 801 frequency points were measured. The first band ranged from 50 MHz to 1.0

GHz, the remaining bands were each 1.0 GHz wide.

In order to measure the error-corrected S-parameters at multiple frequency bands, a cal-

ibration had to be performed for each of the frequency bands. A standard open/short/load

“full 2-port” calibration (with the Isolation standard omitted) was performed at each fre-

quency band. Since the HP8510 does not have sufficient memory to store all of the correc-
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tion coefficients, the six 801-frequency calibration sets were stored on 3.5” floppy disks and

loaded and deleted from the network analyzer memory as needed.

The other instrumentation parameters of note are: the source was operated in “Step

Frequency Mode” (the oscillator was phase locked at each frequency), the source power was

+10 dBm, 512 IF averages were used for the high-signal calibration standards and 1,024

IF averages were used for the low-signal calibration standards and for the measurements.

Over the first frequency band at which the amplitude of S12 is lowest, an IF averaging

factor of 2,048 was used. Good measurement practices were employed: the connectors of

the DUT, calibration standards, instruments, and RF cables were cleaned; RF connections

were torqued to 8 in-lb; and more than sufficient time was allowed to elapse with the

instrumentation turned on and with the DUT in place to ensure thermal stability

4.2.4. Measurement Results

The measured S-parameters of the fuselage with and without passengers are shown in

Figs. 4.10 - 4.12. Because the system is reciprocal (S12 = S21), only S12 is plotted.

From Figs. 4.10 - 4.12, it is evident that the presence of the passengers has a negligible

impact on S11 (the two curves are indistinguishable), which is the reflection coefficient of

the exterior antenna. However, the passengers did have a significant effect on S22 and

S12. As shown, S22 (the interior antenna) and S12 without passengers exhibit much more

oscillatory behavior due to the large number of resonances present inside the fuselage.

However, S22 and S12 with the passengers exhibit much smoother distributions since many

resonant components have been significantly dampened by the “human bodies” which are

highly dielectric and lossy. Due to this phenomenon, the presence of the passengers has
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Fig. 4.10. Measured S11 (the exterior antenna) of the simplified fuselage with and without
passengers.
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Fig. 4.11. Measured S22 (the interior antenna) of the simplified fuselage with and without
passengers.
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Fig. 4.12. Measured S12 of the simplified fuselage with and without passengers.

the effect of slightly reducing the possibility of aircraft system upset by PED emissions as

compared to that of the empty fuselage.

4.3. Simulations

The mutual coupling between the internal PED antenna and the antenna mounted

on the exterior of the fuselage was simulated using the FDTD algorithm [1], [6]. The

S-parameters were computed following the procedure described in [8].

Due to the very large permittivity values of the salt water, a finer mesh size than that

used for the case of the empty fuselage was necessary. Therefore, a cell size of ∆x = ∆y =

∆z = 2.5mm (λ/40 at 3 GHz in free space or about λ/5 at 3 GHz in the salt water) was

used. To allow the excitation pulse to decay to a low level, the simulation was executed for

60,000 time steps.
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From the numerical experiments, it has been found that the coupling results are

not very sensitive to variations in the passengers’ permittivity and conductivity. To

demonstrate this, S12 values were computed for three different combinations, e.g.: the

low-frequency parameters (εr = 78.22, σ = 1.42S/m) at 500 MHz, the high-frequency

parameters at (εr = 60.12, σ = 18.43S/m) 10,000 MHz, and the average parameters

(εr = 70.35, σ = 8.05S/m).The S12s computed using these three different sets of param-

eters are plotted for the frequency band of 1,500 MHz to 2,500 MHz in Fig. 4.13 and for

the frequency band of 4,500 MHz to 5,500 MHz in Fig. 4.14.

As shown, the simulated results using different parameters agree to each other very

well regardless of the dispersive characteristic of the salt water. That the direct path

through window C likely accounts for the majority of the coupling of energy from the PED

to the exterior antenna probably explains this insensitivity in S12 to the parameters of

the passengers. Based upon this observation, it can be justified that, for this particular

configuration, a complete dispersive modeling of the salt water is not necessary. Hence, the

average permittivity and conductivity values (70.35 and 8.05 S/m) were used for the rest

of this paper.

The time snapshots of the Ez fields in various cross-section planes are plotted in Fig.

4.17 - 4.18. The brightness of the plot increases with the magnitude of the Ez field. Clearly,

the E fields subject significant damping inside the “passenger bodies”. Also notice the

strong E fields radiated through Window C in Fig. 4.18.

Moreover, the time history of an Ez field in the free-space region inside the fuselage

is plotted in Fig. 4.19. The Ez field at the same position for the empty case is also

plotted in Fig. 4.19 as a comparison. It is evident that magnitude of the Ez field with
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Fig. 4.13. Simulated S12 using different electric property combinations (1500 - 2500 MHz).
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Fig. 4.14. Simulated S12 using different electric property combinations (4500 - 5500 MHz).
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Fig. 4.15. Logarithmic plot of the Ez field on the yz-plane (front view) across one row of
passengers.

Fig. 4.16. Logarithmic plot of the Ez field on the yz-plane (front view) at the center of
Window C.
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Fig. 4.17. Logarithmic plot of the Ez field on the xz-plane (side view) across one column
of passengers.

Fig. 4.18. Logarithmic plot of the Ez field on an xy-plane (top view) at the fuselage center
in the y direction.
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Fig. 4.19. Representative time history of the Ez field inside the fuselage with and without
the passengers.

passenger presented decay much faster than that without, due to the heavy damping inside

the passenger.

The measured and simulated S-parameters with the passengers are plotted in Figs.

4.20 - 4.22. As shown, S11, which is essentially just the reflection coefficient of a monopole,

has a null at 2500 MHz. The null of FDTD simulated result is shifted to a lower frequency

by about 100 MHz. However, S22, which is the reflection coefficient of the internal antenna,

exhibits a similar trend as that of S11 but with more oscillations due to the fuselage’s highly

resonant characteristic.

Of the S-parameters, S12 is the most important since it represents the energy generated

by the PED which could interfere with the aircraft’s communication system. To better
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Fig. 4.20. Measured and simulated S11 of the simplified fuselage filled with passengers.
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Fig. 4.21. Measured and simulated S22 of the simplified fuselage filled with passengers.
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Fig. 4.22. Measured and simulated S12 of the simplified fuselage filled with passengers.

illustrate the variation of S12, Fig. 4.22 is expanded in different frequency bands, as shown

in Figs. 4.23 - 4.26. Very good agreement is observed from 1,500 MHz to 5,500 MHz. The

discrepancy near the lower frequencies is probably due to the extremely low coupling level.

However, the discrepancy at the high end of the frequency band can be attributed to the

large dispersion error caused by very discretization. Moreover, it is important to note that

the maximum coupling level, which is higher than -40 dB, occurs between 2.0 - 3.5 GHz.

This level of coupling is sufficiently high to draw the attention of the communication system

designers.

4.4. Conclusion

In summary, the effects of passengers on the mutual coupling between a simulated PED

and an externally-mounted antenna were investigated. By comparing the S-parameters for
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Fig. 4.23. Measured and simulated S12 of the Simplified Fuselage filled with passengers
(1500 - 2500 MHz).
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Fig. 4.24. Measured and simulated S12 of the Simplified Fuselage filled with passengers
(2500 - 3500 MHz).
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Fig. 4.25. Measured and simulated S12 of the Simplified Fuselage filled with passengers
(3500 - 4500 MHz).
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Fig. 4.26. Measured and simulated S12 of the Simplified Fuselage filled with passengers
(4500 - 5500 MHz).



154

the empty scale model fuselage with those for the case in which the scale model is popu-

lated with 90 bodies which simulated human passengers, it was found that the presence of

passengers significantly dampens the reverberations that occur within the fuselage. This

dampening effect reduces the magnitude of the coupling over most of the frequencies con-

sidered, and by up to approximately 15 dB. The reduced threat indicated with passengers

present, potentially represents a relaxation in the EMI shielding required for on-board sys-

tems compared to that indicated by predicted and measured S-parameters for the empty

fuselage case.



CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

The major objective of the research presented in this project was to develop low-

dispersion finite-difference time-domain (FDTD) methods. In particular, such methods are

of great interests in many practical applications which contain electrically large objects

and/or require very long simulation time. The currently standard FDTD method, Yee’s

algorithm, is only second-order accurate in both the space- and time- domains which suffers

from serious dispersion. However, Yee’s algorithm is robust and very easy to implement.

Over the years, numerous practical problems have been successfully simulated using Yee’s

algorithm. Therefore, to take advantage of the available geometry library, the ideal method

should be able to minimize the dispersion errors without significant modifications based on

Yee’s algorithm.

5.1. Summary and Conclusions

In Chapter 1, the issues caused by the electrically large problems and the difficulties

for Yee’s algorithm were described. It was indicated that the mesh refinement is not a

very efficient way of reducing dispersion. Thus, the severe dispersion accumulation of Yee’s

algorithm greatly restricts the electrical size of the structures that can be handled. Based on

a selective survey of the existing literature, the existing dispersion-reduction FDTD methods

can be roughly classified into two categories: the standard (SFD) and the nonstandard

(NSFD) FDTD methods. The SFD methods use the standard central difference stencils

which are derived from the Taylor series expansion by minimizing the leading truncation
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error. To further reduce dispersion, the NSFD methods adjust the coefficients of the SFD

stencils directly based on the dispersion analysis.

Chapter 2 introduced the fundamental theories of the SFD methods. The governing

equations of any electromagnetic phenomena, Maxwell’s equations was first reviewed. Then,

the procedure to derive Yee’s FDTD(2,2) algorithm was demonstrated. That is, the E−

and H− fields are staggered in both the time- and space domains. Then, the time- and

space- derivatives in Maxwell’s equations are directly approximated by the second-order

central difference stencil. To improve the accuracy, it is natural to consider the usage of

the higher-order finite difference stencils. For simplicity, the higher-order stencils were only

used in the space domain which constructs the FDTD(2,N) schemes. The approach to

derive the higher-order stencil, the method of undetermined coefficients, was demonstrated

for the FDTD(2,4) algorithm. Then, the procedure was generalized for central difference

stencils with arbitrary high order. It was indicated that the highest order-of-accuracy that

can be achieved increases with the number of points involved in the stencil. Next, the

stability conditions of the SFD methods were also briefly discussed. Finally, the dispersion

characteristics of the SFD methods were quantitatively studied. Based on the dispersion

analysis, it is clear that the dispersion is determined by the space and time increments,

the operating frequency, and the propagation angles. Using the higher-order stencils does

help to reduce the dispersion errors. It was also observed that the local dispersion curve

of a SFD method is centered about its own average value. Moreover, for the FDTD(2,N)

scheme, the ideal N -order cannot be achieved due to the larger errors generated in the time

domain. These observations can be exploited to further reduce the dispersion.

In Chapter 3, the major topic of this project, the NSFD methods, were presented.
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The discussion started with the fundamental theory of the NSFD algorithm. It was shown

that the regular NSFD algorithm was constructed by simply replacing the time and space

increments in Yee’s scheme by their frequency-optimized counterparts. The 1D NS22 scheme

was first introduced followed by a detailed dispersion analysis. A few numerical simulations

were provided to verify the performance of the 1D NS22 scheme. It was observed that

the NS22 scheme is a narrow-band scheme in terms of dispersion, which is very suitable

for single-frequency simulations. The dispersion null can be flexibly controlled by a design

mesh resolution. For broad-band signals, the 1D NS22 scheme could predict results no worse

than Yee’s algorithm as long as the design mesh resolution is properly selected. Then, the

basic concept of the NSFD was extended to the four-point stencil to create an NS24 scheme.

Dispersion analysis revealed that the NS24 scheme possesses two dispersion nulls of which

one controlled by the design mesh resolution and the other is controlled by the Courant

number. With two nulls, an 1D broad-band scheme can be designed using the NS24 scheme.

However, these dispersion characteristics are only limited to the 1D case. For multi-

dimensional cases, the above schemes suffers from significant anisotropy. The reason is

that the derivation of the frequency-optimized time and space increments did not consider

the wave traveling along directions other than the principle axes. To mitigate the average

dispersion error, values of the frequency-optimized increments might me slightly adjusted.

Following this idea, an improved NSFD (INS) algorithm was presented by introducing extra

free parameters into the frequency-optimized increments. This is equivalent to shifting

the average dispersion values of the regular NSFD towards zero. The concept of the INS

scheme was applied to both the (2,2) and (2,4) stencils to construct the INS22 and INS24

schemes. The values of these free parameters can be written in closed form. However,
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a zero dispersion angle, which can only be found numerically, must be specified. A more

straightforward approach was to use the least square method (LSM). A follow-up dispersion

analysis indicated that the INS schemes did improve the dispersion in global sense near

the design mesh resolution. However, for single-frequency, the local dispersion error still

depends on the propagation angles. In other words, for certain directions, the regular NSFD

methods could be more accurate than the proposed INS schemes. Numerical simulations,

including cavity, radiation, and scattering problems, were presented using both the INS22

and INS24 schemes.

The INS scheme opened a door for further dispersion reduction which could be achieved

by introducing more free parameters into the stencil. A generalized NSFD (GNS) was

presented in this spirit. With the cost of the order-of-accuracy in the space stencil, the

GNS schemes are more powerful in dispersion minimization. Two GNS24 schemes, one

broad-band and one narrow-band, were presented. The coefficients of GNS schemes were

solved using the LSM. It was found that the average dispersion errors of the broad-band

GNS scheme are smaller than that of their standard counterparts. However, this scheme

suffers from more anisotropy. The narrow-band scheme exhibits extremely low dispersion

at the design mesh resolution regardless of the propagation angles. However, this excellent

performance can only be achieved near the design mesh resolution. In order to conduct

radiation/scattering simulations, Berenger’s perfectly matched layer (PML) was examined

for the schemes with extended four-point stencils. From the numerical experiments, it can

be observed that Berenger’s PML is able to effectively absorb the outgoing waves. Two

simulations, a cavity and a four-element array, were performed using the GNS schemes,

which verified the dispersion analysis. Moreover, it was found that the GNS schemes can be
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used to further reduce the dispersion within certain angle ranges. Also, the extra anisotropy

generated in a rectangular-meshing domain can be automatically compensated by the GNS

schemes. Then, the successful application to a (2,6) stencil showed that the proposed

procedure works equally well for more complex stencils.

After that, the stability conditions of the GNS24 schemes were derived using a complex-

frequency analysis. Compared to their standard counterparts, the stability limits of the

NSFD schemes are slightly perturbed. Furthermore, Gauss’s Laws were examined for the

above NSFD methods. It was proven that the Gauss’s Law is satisfied if a cubic mesh

is used. Using the standard finite difference, Gauss’s Laws are conditionally satisfied for

the rectangular mesh. The extra constraints will compromise the dispersion performance.

However, using the nonstandard differentiation, Gauss’s Laws are automatically satisfied.

In the last part of this chapter, the error generated by the material discontinuities was

investigated. Two conditions, one narrow-band and one broad-band, were proposed for the

1D dielectric interfaces. For the narrow-band condition, the simulation showed that the

error generated by the discontinuity is significantly reduced for the design mesh resolution.

For the broad-band condition, the fourth-order accuracy of the entire scheme is fully restored

if a small time-step is used.

Chapter 4 examined an important EMC problem concerning the effects of passengers

on the PED mutual coupling in a simplified Boeing 757 fuselage. The two antennas includes

one monopole mounted on the exterior of the fuselage and the other in the interior. The

“bodies” of the onboard passengers, which are highly lossy and dispersive, were simplified

and modeled using salt water contained in sealed plastic tubes. The S-parameters were

simulated using Yee’s algorithm and measured in the Electro-Magnetic Anechoic Chamber.
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Both the simulated and the measured results agree to each other very well. It was observed

that many high-frequency resonances were significantly dampened due to the lossy behav-

ior of the ”human bodies”. The presence of the passengers reduces the threats from the

electromagnetic interference for the onboard system.

5.2. Future Work

The research of this project presented a successful approach to minimize the dispersion

without significant modification of Yee’s algorithm. Some useful recommendations for future

developments are summarized in this section.

First of all, the NSFD methods presented in this report only achieve low dispersion

near a design mesh resolution. Some of them, such as the GNS24-1 scheme, exhibit lower

dispersion over the entire frequency band. However, the improvement is very limited. One

of the most straightforward solutions is to consider even more complex stencils, such as the

sixth-order stencils. Since more coefficients (degrees of freedom) are involved, the approach

presented in this report can be readily extended to two, three or even more design mesh

resolutions. By appropriately choosing these design mesh resolutions, a controllable broad-

band low-dispersion scheme can be expected.

Second, a more challenging problem is to derive the corresponding material interface

conditions for the complex stencil. The dielectric interface conditions proposed in this

project are limited to only 1D case. It is still necessary to derive proper interface conditions

for multi-dimensional cases, where the reflection and transmission mechanisms are more

complicated. Furthermore, there is still no practical PEC interface condition for extended

stencils, which can handle complex 3D problems accurately with stability. The material
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interface treatments for extended stencils still remain one of the most challenging problems

in the FDTD area.

Finally, the NSFD methods discussed so far only considered simple materials. For com-

plex materials, such as lossy, dispersive, and nonlinear materials, the approach introduced

in this project cannot be directly applied. In [42], [43], Cole did some pioneering work

in applying NSFD to complex material. However, they are still not practical. Moreover,

Berenger’s PML was not fully justified for the schemes using extended stencils. The larger

noise basis generated at the air-PML interfaces could cause serious problems for late time.

The development of the appropriate ABCs is still necessary.



REFERENCES

[1] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain
Method. Boston, MA: Artech House, 1995.

[2] C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989.

[3] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.

[4] R. F. Harrington, Field Computation by Moment Methods. IEEE Press, 1993.

[5] J. Jin, The Finite Element Method in Electromagnetics. New York: Wiley, 2002.

[6] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Antennas and Propagat. Soc. Int. Symposium,
vol. 14, no. 3, pp. 302–307, 1966.

[7] K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-
domain literature,” IEEE Antennas Propagat. Magazine, vol. 37, no. 4, pp. 39–56,
1995.

[8] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic
waves,” J. Comput. Phys., vol. 114, no. 1, pp. 185–200, 1994.

[9] ——, “Three-dimensional perfectly matched layer for the absorption of electromagnetic
waves,” J. Comput. Phys., vol. 127, pp. 363–379, 1996.

[10] M. N. O. Sadiku, Numerical Techniques in Electromagnetics. Boca Raton: CRC Press,
1992, pp. 179–204.

[11] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Elec-
tromagnetics. Boca Raton, FL: CRC Press, 1993.

[12] W. Andrew, “Finite-difference time domain method for high frequency and long slot
antennas,” Ph.D. dissertation, Arizona State University, 1996.

[13] G. S. Smith, An Introduction to Classical Electromagnetic Radiation. Cambridge:
Cambridge Univ. Press, 1997.

[14] S. Gedney, Computational electromagnetics: the finite-difference time-domain. Univ.
of Kentucky: Lecture notes, 2003.



163

[15] J. Fang, “Time domain finite difference computation for Maxwell’s equations,” Ph.D.
dissertation, University of California at Berkeley, Berkeley, CA, 1989.

[16] T. Deveze, L. Beaulie, and W. Tabbara, “An absorbing boundary conditon for the
fourth order FDTD scheme,” in IEEE Antennas and Propagat. Soc. Int. Symposium,
July 1992, pp. 342–345.

[17] ——, “A fourth order scheme for the FDTD algorithm applied to Maxwell equations,”
in IEEE Antennas and Propagat. Soc. Int. Symposium, vol. 1, Chicago, IL, July 1992,
pp. 346–349.

[18] T. Deveze, “High order F.D.T.D. algorithm to reduce numerical dispersion and stair-
casing,” in 10th Annual Review of Progress in Applied Computational Electromagnetics,
vol. 2, Monterey, CA, Mar. 1994, pp. 61–68.

[19] C. W. Manry, S. L. Broschat, and J. B. Schneider, “Higher-order FDTD methods for
large problems,” Appl. Comput. Electromagn. Soc. J., vol. 10, no. 2, pp. 17–29, 1995.

[20] B. Gustafsson and P. Olsson, “Fourth-order difference methods for hyperbolic ibvps,”
J. Comput. Phys., vol. 117, pp. 300–317, Mar. 1995.

[21] G. Cohen and P. Joly, “Construction and analysis of fourth-order fintie difference
schemes for the acoustic vave equations in nonhomogeneous media,” SIAM J. Numer.
Anal., vol. 33, pp. 1266–1302, 1996.

[22] D. W. Zingg, “Higher-order finite-difference methods in computational electromagnet-
ics,” in IEEE Antennas and Propagat. Soc. Int. Symposium, vol. 1, Montréal, Canada,
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